## REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE **UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3**



### FACULTE DE GENIE DES PROCEDES

|                       | DEPARTEMENT | GENIE PHARMACEUTIQUE |
|-----------------------|-------------|----------------------|
| $N^{\circ}$ d'ordre : |             |                      |
| Série :               |             |                      |

#### Mémoire de Master

Filière : Génie des procédés Spécialité : Génie pharmaceutique

> Extraction d'une huile a vertus médicinales par Ultrasons et par  $C\mathbf{0}_2$  supercritique et évaluation des activités biologiques

Dirigé par: Dr. HALOUI Ismahene

Grade: MCB Présenté par :

**BOURAYOU** Ghada

**MESKALDJI** Hiba

**BENLOUAD** Roumaissa

Année Universitaire 2020/2021. Session: juin

# Table des matières

| Introduction générale                                                   | 11 |
|-------------------------------------------------------------------------|----|
| Chapitre I : Généralités et données bibliographiques                    |    |
| I.1. Présentation botanique et géographique de la plante                | 13 |
| I.1.1.Description botanique                                             | 14 |
| I.1.2.intérêt pharmacologique, nutritionnel et commerciale de la plante | 14 |
| I.1.2.1. Sur le plan nutritionnel                                       | 14 |
| I.1.2.2.Sur le plan pharmacologique                                     | 15 |
| I.1.2.3.Sur le plan commercial.                                         | 15 |
| I.2.Les huiles naturelles                                               | 15 |
| I.2.1. Les huiles végétales                                             | 16 |
| I.2.1.1.Interet des huiles végétales                                    | 17 |
| I.2.1.1.Intérêts cosmétologique                                         | 16 |
| I.2.1.1.2. Intérêts pharmacologique                                     | 16 |
| I.2.1.1.3.Intérêts nutritionnel                                         | 17 |
| I.2.1.1.4. intérêts commerciale                                         | 18 |
| I.3 Techniques d'extractions.                                           | 19 |
| I.3.1.Les méthodes conventionnelles.                                    | 19 |
| I.3.1.1.L'hydro distillation                                            | 19 |
| I.3.1.2.La distillation sèche                                           | 20 |
| I.3.1.3.Extraction par solvant volatil                                  | 20 |
| I.3.2.Techniques d'extraction innovantes                                | 21 |
| I.3.2.I. Techniques headspace                                           | 21 |
| I.3.2.2. Extraction par fluide supercritique (EFS)                      | 21 |
| I.3.2.3. L'extraction par ultrasons                                     | 22 |
| I.4.Activités biologique                                                | 23 |

| I.5.Mise en évidence de l'activité antiradicalaire                | 23    |
|-------------------------------------------------------------------|-------|
| I.5.1.Activité anti radicalaire au DPPH•                          | 23    |
| I.5.2.Activité du piégeage du cation radical ABTS•+               | 24    |
| I.5.3.Activité du pouvoir réducteur (FRAP)                        | 25    |
| I.6.activité enzymatique                                          | 26    |
| I.6.1. évaluation de l'activité anti diabétique par alpha amylase | 26    |
| I.7.controle qualité de l'huile                                   | 27    |
| I.7.1. l'indice de peroxyde                                       | 27    |
| I.7.2. Indice d'acidité                                           | 28    |
| I.7.3.Extinction dans l'Ultraviolet                               | 29    |
|                                                                   |       |
| Chapitre II : Matériels et méthodes                               | ••••• |
| II.1. Introduction                                                | 30    |
| II.2 Matériaux et Méthodes                                        | 31    |
| II.2.1 Matières végétales                                         | 31    |
| II.2.2 Traitement de la matrice solide                            | 32    |
| II.2.2.1. Broyage et granulométrie                                | 32    |
| II.2.2.2. Teneur en eau $(T_H)$                                   | 33    |
| II.2.2.3. Stockage et conservation                                | 33    |
| II.3 Dispositif expérimental                                      | 33    |
| II.3.1. Extraction par Ultrasons                                  | 33    |
| II.3.1.1. Principe de l'extraction par sonificateur               | 33    |
| II.3.1.2. Description et mise en fonctionnement de l'équipement   | 35    |
| II.3.1.2.1. Description de l'équipement                           | 35    |
| II.3.1.2.2 Mise en fonctionnement de l'équipement                 | 35    |
| II.3.1.3. Développement et suivi expérimental                     | 36    |
| II.3.1.3.1 Domaine d'étude                                        | 37    |

| II.3.1.4 Analyse statistique                                                                   |
|------------------------------------------------------------------------------------------------|
| II.3.2. Extraction par CO2 supercritique                                                       |
| II.3.2.1. Principe de l'extraction par CO2 supercritique                                       |
| II.3.2.2. Choix des conditions opératoires                                                     |
| II.3.2.3. Description et mise en opération de l'installation                                   |
| II.3.2.3.1. Description de l'installation                                                      |
| II.3.2.3.2 Principe et mise en fonctionnement                                                  |
| II.3.2.3.3 Développement et suivi expérimental                                                 |
| II.4. Calcul du rendement d'extraction                                                         |
| II.5. contrôle qualité de l'huile de Chia                                                      |
| II.5.1. Le taux d'acidité                                                                      |
| II.5.2. L'indice de peroxyde                                                                   |
| II.5.3. l'absorbance spécifique dans l'ultraviolet                                             |
| II.6. Activité antioxydante                                                                    |
| II.6.1.Activité antiradicalaire au DPPH                                                        |
| II.6.2. Activité du piégeage du cation radical ABTS+45                                         |
| II.6.3. Activité de réduction du complexe cuivre-néocuproïne (CUPRAC)45                        |
| II.6.4. Activité du pouvoir réducteur (FRAP)45                                                 |
| II.7. Activité enzymatique                                                                     |
| II.7.1. Evaluation de l'activité antidiabétique                                                |
| II.7.1. 1.Inhibition de l'alpha-amylase46                                                      |
| Chapitre III : Résultats et discussions                                                        |
| III.1. Introduction                                                                            |
| III.2. Modélisation et optimisation du procède d'extraction de l'huile de Chia par Ultrasons48 |
| III.2.1. Plans box-behnken a quatre facteurs                                                   |
| III.2.2. Test de signification des effets                                                      |

| III.2.3. Analyse de la variance54                                         |  |  |  |
|---------------------------------------------------------------------------|--|--|--|
| III.2.4. surface de réponse                                               |  |  |  |
| III.2.5 Optimisation de la réponse                                        |  |  |  |
| III.3. Procède d'extraction de l'huile de Chia par CO2 Supercritique57    |  |  |  |
| III.3.1. Etude de la cinétique d'extraction                               |  |  |  |
| III.4.Contrôle qualité                                                    |  |  |  |
| III.4.1. Classification des l'huiles                                      |  |  |  |
| III.5 activités biologique des extraits                                   |  |  |  |
| III.5.1 Mesure du pouvoir antioxydant des huiles essentielles extraites67 |  |  |  |
| III.5.1.1. Activité du piégeage du cation radical ABTS+67                 |  |  |  |
| III.5.2.Activité antiradicalaire au DPPH                                  |  |  |  |
| III.5.3.Activité de réduction du complexe cuivre-néocuproïne (CUPRAC)71   |  |  |  |
| III.5.4 Activité du pouvoir réducteur (FRAP)74                            |  |  |  |
| III.5.2. Activité antidiabétique                                          |  |  |  |
| III.5.2.1. Inhibition de l'alpha amylase77                                |  |  |  |
| Conclusion générale83                                                     |  |  |  |

#### Résumé

De nos jours, la demande massives des produits biologiques obliges les industries de différents filières a faire recourt aux différents méthodes d'extraction. L'extraction par CO2 supercritique et par ultrasons représentent des techniques innovantes les plus communes. Les grains de chia ont eu un succès important dans leur utilisation, grâce à ces divers activités biologique. Ce travail concerne l'extraction de l'huile végétale par ses deux techniques

L'objectif de ce travail est d'étudier l'efficacité des différentes méthodes d'extraction en termes d'évaluation du rendement et d'activité. Cependant, l'estimation de l'activité biologique est en relation directe avec le type d'extraction utilises, qui peut sélectionner ou pas un ou plusieurs type de molécules responsable de l'activité biologique, et donc le résultat obtenu est corrélé directement a la technique utilisé. Par conséquent les huiles obtenue par Ultrasons son plus riche en antioxydant que les huiles obtenu par CO2 supercritique, et cela s'explique de par la nature apolaire du CO2 supercritique qui a tendance a solubilisé les composé de même nature. Contrairement au solvant eau/éthanol utilisé dans la méthode par ultrasons qui a tendance à extraire les composés polaires et hydrophiles tel que les antioxydants.

L'huile présente aussi une forte activité antidiabétique qui s'est avéré 21 fois plus significative que celle du standard.

L'Optimisation de l'extraction par Ultrasons nous a donné un coefficient de corrélation R2= 81,10% obtenu pour Une amplitude de 70%, une pulsation de 53.7374, et un temps de 29.3939 min et un pourcentage d'éthanol de 50%, nous permettant d'affirmé que le modèle obtenu est très satisfaisant est traduit bien les résultats obtenu expérimentalement.

L'étude de l'influence des conditions opératoires de la cinétique d'extraction et l'estimation de la solubilité de l'huile dans le CO2 supercritique a montré qu'une combinaison d'une température de 75° et une pression de 300 bar montre le meilleur rendement obtenu, que l'effet de la pression est le plus significative par rapport à la température.

Notant que l'extraction par fluide supercritique est généralement la plus adéquate tant qu'elle n'utilise pas de solvant organique et donne un extrait assez pur, cependant c'est relié a l'objectif et au type de nature d'utilisation de l'huile extrait.

Mot clés : extraction, supercritique, CO2, chia, ultrason, activité antioxydant, antidiabétique, optimisation