REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR UNIVERSITE SALAH BOUBNIDER

FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE PHARMACEUTIQUE

Série:		
	Mémoire de Master	

N° d'ordre :

Filière: Génie des Procédés

Spécialité: **Génie Pharmaceutique**

Intitulé

ETUDE DYNAMIQUE ET OPTIMISATION DU PROCEDE DE PRODUCTION DE LA L-LYSINE-HCI PAR FERMENTATION PAR LA CORYNEBACTERIUM GLUTAMICUM

GLUTAMICUM

Dirigé par : Réalisé par :

❖ Mme. AMICHI Hayet
★ NEHIDJA Mohamed

❖ Mme. LOUAER Ouahiba
★ BOUCHEMEL Rayene

Année universitaire 2018/2019

Session : Juillet

Sommaire

Remerciement	
Dédicaces	
Liste des tableaux	
Liste des figures	
Nomenclature	
Introduction générale	1
Chapitre I : Généralités sur la fermentation	
I.1 Introduction	3
I.2 Fermentation	3
I.3 Facteurs influençant la fermentation	3
I.4 Modes de fermentation	4
I.4.1 Mode discontinu (ou Batch)	4
I.4.2 Mode semi-continu (ou Fed-batch)	4
I.4.3 Mode continu (ou chemostat)	4
I.5 Cinétique de croissance des populations microbiennes	4
I.5.1 Phase stationnaire initiale ou phase de latence (I)	5
I.5.2 Phase d'accélération de la croissance (II)	5
I.5.3 Phase de croissance à vitesse constante (III)	5
I.5.4 Phase de ralentissement de la croissance (IV)	5
I.5.5 Phase stationnaire maximale (V)	5
I.5.6 Phase de décroissance (VI)	5
I.6 Equipements de la fermentation	8
I.6.1 Définition du bioréacteur	8
I.6.2 Types des bioréacteurs	8
I.7 Production de l'acide aminée L-lysine par fermentation	9
I.7.1 La production da La L-lysine	9
I.7.2 La synthèse de La L-lysine	9
I.7.3 Les travaux réalisés	10
Chapitre II : Matériels et méthodes	
II.1 description du procédé selon le flowsheet élaboré	12
II.2 Calcul des charges	13
II.2.1 Quantité annuelle produite de la L-lysine	14

II.2.2 Charges du milieu de culture	15
II.2.2.a Calcul de la quantité du glucose	15
II.2.2.b Calcul de la quantité d'eau	16
II.2.2.c Calcul de la quantité d'HCl	17
II.2.2.d Calcul de la quantité de biomasse	19
II.3 Effet des principaux paramètres de la bioréaction	20
II.3.1 Variation de thréonine	20
II.3.2 Variation de la biomasse	21
II.3.3 Variation du glucose	22
II.4 Présentation des plans d'expériences	22
II.4.1 Plan factoriel	22
II.4.1.1 Explication de l'étude	23
II.4.1.1.a Recherche de la quantité minimale et la quantité maximale	23
II.4.1.1.b Plan d'expérience	25
II.4.1.1.c Analyse statistique des résultats	25
II.4.2 Plan de surface de réponse (Box-Behnken)	26
Chapitre III : Résultats et discussions	
III.1 Dynamique du bioréacteur	27
III.1.1 Résultats obtenus par le logiciel Mathcad	27
III.1.2 Résultats de la dynamique du bioréacteur obtenus par SuperPro Designer	29
III.2 Influence des principaux paramètres de la bioréaction	31
III.2.1 Effet du glucose	31
III.2.2 Effet de la biomasse	32
III.2.3 Effet de la thréonine	33
III.3 Rendement global productivité	34
III.3.1 Rendement	35
III.3.2 Productivité	36
III.3.3 Temps de fermentation	37
III.4 Plans d'expériences	39
III.4.1 Plan factoriel	39
III.4.1.a Analyse du plan factoriel	39
III.4.1.b Analyse statistique des résultats	41
III.4.1.C Interprétation graphique des résultats	44
III 4.2 Plan de surface de rénonse (Box-Behnken)	48

α				•	
•	Λī	n	m	ลเ	r

III.5.2.a Analyse du plan Box-Behnken	49
III.4.2.b Analyse statistique des résultats	51
III.4.2.c Interprétation graphique des résultats	53
Conclusion et perspectives	57

Conclusion générale

L'objectif principal de ce travail est l'étude dynamique, par les logiciels SoperPro Designer et Mathcad, et l'optimisation, par plan d'expérience en utilisant les plans factoriel et de box-Behnken, de la production de lysine par *Corynebacterium glutamicum* discontinue.

Nous avons résumé les principaux résultats obtenus, en reprenant les différentes parties développées au cours de notre travail. Finalement, nous terminerons par des perspectives envisageables suite à ce travail.

La première partie a principalement été basée sur l'étude du comportement des principaux paramètres de la bioréaction et qui sont la *C.glutamicum* comme souche bactérienne, le glucose comme source de carbone et donc substrat, la thréonine comme mutant auxotrophe.

- Les résultats obtenus ont montré que la croissance bactérienne de notre biomasse passe par cinq étapes dont la principale est la phase exponentielle où le glucose et la thréonine sont rapidement consommés. La production de la lysine quant à elle, s'accélère pour dépasser la croissance bactérienne. Ce phénomène est dû à la consommation par la bactérie de la thréonine dont le rôle est d'inhiber sa croissance et donc donner une surproduction de la L-lysine.
- La variation de la concentration de la thréonine a donné:
 - Une meilleure production de lysine.
 - Une augmentation du rendement et de la productivité.
 - Une diminution du temps de fermentation.

La deuxième partie consiste en l'étude des effets du glucose, biomasse et de la thréonine sur la production de la L-lysine en utilisant le plan d'expérience, les résultats obtenus dans l'intervalle d'étude révèlent:

• Le glucose et la biomasse exercent plus d'effet sur la production que la thréonine.

Les quantités optimales trouvées après optimisation sont:

Plan factoriel:

La quantité maximale de la L-lysine produite, de 12820.3 Kg/batch, est atteinte en considérant -La quantité minimale de glucose, de 43093 kg/batch

-Les quantités maximales de la biomasse et de la thréonine, qui sont respectivement de 918 kg/batch et 199.71 kg/batch.

Plan Box-Behnken:

Pour atteindre la quantité maximale de lysine qui est de 12913.7 Kg/batch, on trouve:

- -Le glucose une quantité de 43093 kg/batch ce qui correspond au minimum.
- -La thréonine une quantité de 199.85 kg/batch.
- -La biomasse une quantité de 918 kg/batch, correspondant au maximum.

A la suite de ce travail de nombreuses perspectives peuvent être envisagées, les principales sont les suivantes:

L'étude de la variation du débit d'air sur la production.

L'optimisation des facteurs physiques tels que l'agitation et le PH.

Etudier le mode fed-batch pour la production de la L-lysine.

Résumé:

Cette étude consiste à étudier la dynamique de production d'un acide aminé (L-lysine) par Corynebacterium glutamicum en utilisant le logiciel SuperPro Désigner® et mathcad. L'objectif principal est d'investiguer l'effet des concentrations initiales du glucose, thréonine et la biomasse sur le rendement de production de L-lysine.

Les deux plans d'expériences : le plan factoriel et le plan de surface de réponse ont été appliqués pour évaluer les résultats obtenus et déterminer les conditions optimales. La quantité maximale de lysine égale à 12821.41 (Kg/batch), a été obtenue avec une quantité de glucose de 43093 (Kg/batch), une quantité de thréonine de 199.71 (Kg/batch) et une quantité de biomasse de 918 (Kg/batch) et a concentration initiale égale 1 (g/l) de thréonine.

Mots clé:

Dynamique, corynebacterium glutamicum, thréonine, L-lysine, Super Pro Désigner®, plans d'expériences, mathcad, quantité de lysine.

الملخص:

تبحث هذه الدراسة في ديناميكيات إنتاج الأحماض الأمينية (ليزين) بواسطة كوريني باكتيري باستخدام برنامج سوبر برو ديزاينر ومات كاد. الهدف الرئيسي هو دراسة تأثير التركيزات الأولية للجلوكوز والثريونين والكتلة الحيوية على إنتاج ليزين.

تم تطبيق التصميمان التجريبيان: التصميم المضروب وخطة الاستجابة السطحية لتقييم النتائج التي تم الحصول عليها وتحديد الظروف المثلى. تم الحصول على الحد الأقصى من كمية ليسين تساوي الحصول عليها وتحديد الظروف المثلى. تم الحصول على الحد الأقصى من كمية ليسين تساوي 199.71 (كجم/دفعة)، وكمية من ثريونين من 199.71 (كجم/دفعة)، وكمية من ثريونين من 199.71 (كجم/دفعة) والتركيز الأولي يساوي 1 (جم/لتر) من ثريونين.

الكلمات المفتاحية:

الديناميكيات، كوريني باكتيري، ثريونين، ليسين، سوبر برو ديزاينر، تصميمات تجريبية، مات كاد، كمية ليسين.