REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTEMENT DE GENIE PHARMACEUTIQUE

IN	TITHE	
Filière : Génie des Procédés	Spécialité : Génie Pharmaceutique	
Mémoire de Master		
Série :		
N°d'ordre :		

REPRESENTATION DE LA SOLUBILITE DES SOLIDES DANS LES FLUIDES SUPERCRITIQUES PAR UN MODELE BASE SUR LA THEORIE DU LIQUIDE ETENDU " $EXPANDED\ LIQUID$ "

Dirigé par :	présenté par :
Dr.NASRI Loubna	HAMLAOUI Bochra
	GHALEM Samira

Année Universitaire 2018/2019 Session :(Juillet)

TABLE DES MATIERES

TABLE DES MATIERES	i
LISTEDES FIGURES	iii
LISTE DES TABLEAUX	iv
NOMENCLATURE	v
INTRODUCTION GENERALE	1
CHAPITRE I: GENERALITES SUR LES FLUIDES SUPERCRITIQUES	
I.1.Repères historiques	4
I.2.Définition d'un fluide supercritique	4
I.3. Propriétés physique-chimique de fluide supercritique	6
I.4. Le CO ₂ supercritique	7
I.4.1. Domaines d'applications du CO ₂ supercritique :	7
CHAPITRE II : COMPOSES POLYCYCLIQUES AROMATIQUES	
II.1.INTRODUCTION	9
II.2.Généralité sur les polycycliques aromatiques	10
II.2.1. Définition	10
II.2.2.Origine des HAP	10
II.3. Les principales catégories des HAP	11
II.3.1. Les 16 HAP prioritaires	11
II.3.2. Structures et propriétés physico-chimiques	11
II.4. Les effets des HAP sur l'environnement et la santé humaine	12
II.4.1. Pollutions par des HAP	12
II.4.2. Toxicité des HAP	13

CHAPITRE III : PREDICTION DE LA SOLUBILITE DES POLYCYCLIQUES AROMATIQUES CONSIDERES ET THEORIE DU LIQUIDE ETENDU "EXPANDID LIQUID" $^{\circ}$

III. 1. INTRODUCTION	15
III. 2. Modèles théoriques ou semi-empiriques	15
III. 2.1.Modèles basés sur une équation d'état cubique	15
III. 2.2. Modèles basés sur le coefficient d'activité	17
III. 2.2.1. Equation de Margules	18
III. 2.2.2. Équation de Wilson modifie	19
III. 3. Les avantages du modèle	21
CHAPITRE IV: RESULTATS ET DISCUSSION	
Résultats et discussions	22
IV.1. Calcul de la solubilité	22
IV.2. Résultats	25
IV.3. Discussion	48
Conclusion Générale	49

LISTE DES FIGURES

Figure .I.1 : Diagramme de phase d'un corps pur	5
Figure.II.1:Structure des 16 HAP de la liste EPA.	2
Figure IV.1: la solubilité de Naphtalène dans le CO ₂ en fonction de la densité réduit 3	4
Figure IV.2 : la solubilité d'Acénaphtène dans le CO ₂ en fonction de la densité réduit 3	7
Figure IV.3 : la solubilité de fluoréne dans le CO ₂ en fonction de la densité réduit	8
Figure IV.4 : la solubilité de phénanthrène dans le CO ₂ en fonction de la densité réduit 3	9
Figure IV.5 : la solubilité d'Anthracène dans le CO ₂ en fonction de la densité réduit	0
Figure IV.6 : la solubilité de fluoranthène dans le CO ₂ en fonction de la densité réduit4	4
Figure IV.7 : la solubilité de pyrène dans le CO ₂ en fonction de la densité réduit	-5
Figure IV.8 : la solubilité de Chrysène dans le CO ₂ en fonction de la densité réduit	17

LISTE DES TABLEAUX

Tableau. I.1 : Coordonnées critiques de quelques corps purs	5
Tableau. I.2: Propriétés physiques des fluides classiques et supercritiques	6
Tableau. П.1: Les différentes catégories des HAP	13
Tableau IV.1: Propriétés physiques de solvant(CO ₂)	22
Tableau IV.2: Solutés HAP et propriétés nécessaires	23
Tableau IV.3 : Sources de la solubilité expérimentale	24
Tableau IV.4 : Paramètres et différences obtenus	25
Tableau IV.5 : Résultats détaillés pour le système Naphtalène-CO ₂	26
Tableau IV.6 : Résultats détaillés pour le système Acénaphtène-CO ₂	35
Tableau IV.7 : Résultats détaillés pour le système Fluoranthène-CO ₂	41
Tableau IV.8 : Résultats détaillés pour le système Chrysène-CO ₂	46

الملخص:

نظرًا لأن تطوير النماذج الرياضية مفيد للغاية في تحديد قابلية الذوبان لمختلف المواد المذابة في السوائل فوق الحرجة، في هذا العمل تم اعتماد نهج نظرية السائل الموسع للتنبؤ بذوبان بعض الذرات العطرية متعددة الحلقات, أحجام وميزات مختلفة. يُقترح شكل معدّل من نموذج ويلسون للتنبؤ بالذوبان في النظم الثنائية (ثاني أكسيد الكربون المذاب) في الاعتبار من خلال حساب معامل النشاط. يؤخذ تأثير ظروف التشغيل العالية (المجال فوق الحرج) في الاعتبار من خلال تباين حجم المولي للمذاب. تظهر نتائج هذا العمل أن بيانات القابلية للذوبان المتوقعة في توافق جيد مع البيانات التجربيبية بالإضافة إلى ذلك، تتم مناقشة اعتماد المعلمات الثنائية على الكثافة وخصائص معينة من المذاب على أساس تطور ها كدالة للكثافة المنخفضة للمذيب.

الكلمات المفتاحية:

ثاني أكسيد الكربون فوق الحرج / السائل القابل للتوسيع / نموذج Wilson / الذوبان.

Résumé:

Etant donné que le développement de modèles mathématiques est extrêmement utile pour déterminer la solubilité de divers solutés dans des fluides supercritiques, dans ce travail l'approche par la théorie du liquide étendue « *expanded liquid* » est adoptée pour prédire la solubilité de certains solutés aromatiques polycycliques de tailles et fonctionnalités différente. Une forme modifiée du modèle de Wilson est proposée pour prédire les solubilités des systèmes binaires (soluté-CO₂) considérés en calculant le coefficient d'activité. L'effet des conditions opératoires élevées (domaine supercritique) est pris en compte via la variation du volume molaire du soluté. Les résultats de ce travail montrent que les données de solubilité prédites sont en bon accord avec les données expérimentales. En outre, la dépendance des paramètres binaires sur la densité et certaines caractéristiques du soluté sont discutés sur la base de leur évolution en fonction de la densité réduite au solvant.

Mots clés:

Dioxyde de carbone supercritique / liquide expansible /Modèle de Wilson/ Solubilité.