REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSSEGNEMENT SUPERIEEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE CHIMIQUE

Série :		
	Mémoire de Master	
Filière : Génie des Procédés		Spécialité : Génie Chimique

N° d'ordre :... ...

Étude et Synthèse D'une Commande Optimale Et Application sur Un Procédé Chimique

Dirigé par :	Présenté par :	
BAHITA Mohamed	MELIANI Racha Nihal	
Grade : MCB	REBBADJ Faiza	

Année Universitaire 2019/2020

Table de matières	Page
Liste des figures	i
Liste des tableaux	ii
Nomenclature	iii
Introduction générale	
Introduction générale	1
Chapitre I	
I. Généralités sur la régulation automatique	
I.1. Introduction	3
I.2. La régulation	3
I.3. L'asservissement	3
I.3.1.Structure d'un système asservi	4
I.4. Principe de fonctionnement	6
I.4.1. Système de commande en boucle ouverte BO	6
I.4.2. Système de commande en boucle fermée BF	7
I.5. Performances des systèmes asservis	8
I.5.1. Stabilité	8
I.5.2. Précision	8
I.5.2.1. La précision statique	8
I.5.2.2. La précision dynamique	9
I.5.3. Rapidité	10
I.6. Système linéaire et système non linéaire	10
I.6.1. Système linéaire	11
I.6.2. Système non linéaire	11
I.7. Notion sur les régulateurs	11
I.7.1. Les actions de base des régulateurs	11
I.7.1.1. Action proportionnelle	11

I.7.1.2. Action intégrale	12
I.7.1.3. Action dérivée	
I.7.2. Le régulateur proportionnel P	
I.7.3. Le régulateur proportionnel intégral PI	
I.7.4. Le régulateur proportionnel intégral dérivé PID	
I.7.5. La méthode de réglage pratique de Ziegler et Nichols en chaîne	
fermée (appelée méthode du pompage)	
I.8. Quelques structures de la commande	
I.8.1. La commande adaptative	
I.8.2. La commande prédictive	
I.8.3. La commande par retour d'état	
I.8.4. La commande optimale	18
Conclusion	
Chapitre II	
Chapitre II	
II. La Commande Optimale	
	20
II.1. Introduction	
II.2. La commande optimale	
II.2.1. Objectif	
II.2.2. Le modèle mathématique	
II.2.3. Position de problème	22 24
II.3. La Commande Linéaire Quadratique	24
Conclusion	
Chapitre III	
III. Application de la commande optimale (LQR) sur le réacteur	
parfaitement agité continu (RAC)	
III.1. Introduction	27

III.2.1. Bilan massique	29	
III.2.2. Bilan énergétique		
III.3. Présentation du modèle linéarisé		
III.4. Application de la commande par régulateur PID et la commande optimale		
LQR pour la commande de la concentration dans un réacteur agité en		
continu RAC		
III.4.1. Commande de la concentration dans le RAC par régulateur PID	34	
III.4.2. Commande de la concentration dans le RAC par régulateur LQR	36	
III.4.3. Comparaison entre la commande LQR et la commande par	42	
régulateurs PID		
III.4.4. Organigramme de la simulation	43	
Conclusion		
Conclusion générale		
Conclusion générale		
Références bibliographiques		
Références bibliographiques	47	
Annexes		
Annexe A : Méthode Runge-Kutta (RK4)		
Annexe B: MATLAB		

Résumé

Dans ce travail, nous avons choisi un type de commande optimale qui est le régulateur linéaire quadratique LQR, qui se base sur un modèle linéarisé du système réel. Nous avons appliqué ce régulateur pour commander la concentration dans un réacteur chimique RAC, et nous avons comparé ses performances avec celles d'une commande classique par régulateurs proportionnel intégral dérivée PID. Tous les résultats de simulation obtenus sont validées sous le logiciel MATLAB.

Mots clés

Commande optimale, commande par régulateur linéaire quadratique LQR, commande classique PID, réacteur chimique (RAC), système linéarisé, système non linéaire.

الملخص

في هذا العمل ، قمنا باختيار نوع من تقنية التحكم الأمثل و هو التحكم الخطي التربيعي LQR، والذي يعتمد على نموذج خطي لنظام حقيقي. طبقنا هذا المنظم للتحكم في التركيز في مفاعل كيميائي RAC ، وقمنا بمقارنة أدائه بأداء التحكم الكلاسيكي بواسطة منظمات تناسبية تكاملية اشتقاقية PID. تم التحقق من صحة جميع نتائج المحاكاة التي تم الحصول عليها بموجب برنامج MATLAB.

الكلمات المفتاحية

تحكم أمثل، تحكم بواسطة منظم تربيعي خطي LQR، تحكم كلاسيكي PID، مفاعل كيميائي RAC، نظام خير خطى.