REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTEMENT DE GENIE PHARMACEUTIQUE

N° d'ordre :		
Série :		
Mémoire de Master		
Filière : Génie des procédés	Spécialité : Génie pharmaceutiqu	
	ETUDE DE DEGRADATION J PARACETAMOL	
Dirigé par:	Présenté par :	
RABTI Hadjira	SAOUCHI Lokmane	
Maitre assistante B	SETIFI Amel	

Année Universitaire 2017/2018. Session : (juin)

Table des matières

Liste des abréviations	iv
Liste des tableaux	vi
Liste des figures.	viii
INTRODUCTION GENERALE.	1
CHAPITRE I : ETUDE BIBLIOGRAPHIQUE	4
I.1. Généralités sur le Paracétamol	5
I.1.1. Historique	5
I.1.2. Identification et propriétés du Paracétamol	5
I.2. Validation de la technique d'analyse	7
I.2.1. Aspect réglementaire	7
I.2.3. Définition.	8
I.2.4. Type de méthode d'analyse à valider	8
I.2.5. Critères de performance	9
I.3. Etude de dégradation forcée (stabilité de stress)	10
I.3.1. Historique.	11
I.3.2. Aspect réglementaire	12
I.3.3. Intérêt de l'étude de la dégradation forcée	13
I.3.4. Etapes de la dégradation forcée	13
I.3.5. Mécanismes de dégradation chimique	14
CHAPITRE II : VALIDATION DE LA METHODE D'ANALYSE	18
Introduction	19
Première partie : Identification du paracétamol (matière première)	19

II.1. Matériels	19
II.2. Méthodes	19
II.2.1. Identification par calorimétrie différentielle à balayage (DSC)	19
II.2.2. Identification par spectroscopie infrarouge	20
II.3. Résultats	20
II.3.1. Identification par DSC	20
II.3.2. Identification par IR	21
Deuxième partie : Validation de la méthode d'analyse	22
II.1. Matériel	22
II.2. Méthodes	22
II.3. Résultats et discussion.	24
Conclusion	27
CHAPITRE III : FORMULATION DES COMPRIMES DU PARACETAM	OL 28
Introduction	29
III.1. Matériel	29
III.2. Méthodes	30
III.2.1. Préparation des comprimés	30
III.2.2. Le contrôle des comprimés	30
III.2.3.Comparaison avec les comprimés commercialisés	31
III.3. Résultats et discussion	32
III.3.1.Test d'uniformité de masse	32
III.3.2. Test de dissolution.	33
III.3.3.Test de désagrégation	34
III 3 4 Test de dureté	34

Conclusion	35
CHAPITRE IV: ETUDE DE DEGRADATION FORCEE	36
Introduction	37
IV.1. Matériel	37
IV.2. Méthodes	38
IV.2.1. Etude de dégradation forcée de la matière première	38
IV.2.2. Etude de dégradation forcée du produit fini	39
IV.2.3. Etude de la signification de facteurs de dégradation	40
IV.3. Résultats et discussion.	41
IV.3.1. Etude de dégradation forcée de la matière première	41
IV.3.2. Etude de dégradation du produit fini	44
Conclusion	45
CONCLUSION GENERALE	46
Références bibliographiques	
Dágumá	52

Résumé

Objective : Etudier le comportement de dégradation forcée du paracétamol en vrac et en produit fini. Pour ce but une méthode analytique spectrophotométrie UV-visible a été validée et une étape de formulation des comprimés à libération immédiate a été réalisée. Méthode: Exposer d'abord le principe actif aux conditions d'hydrolyse, d'oxydation, de température, d'humidité et de lumière. Ensuite, le produit fini représenté par des comprimés à libération immédiate formulés au niveau du laboratoire, a été exposé à l'effet du milieu alcalin. Résultats: la méthode est linéaire pour des concentrations de 3 à 25 µg/ml avec un coefficient de corrélation R²=0.998, l'écart type relative est inférieur à 15% et le taux de recouvrement est ce trouve entre [80-120%], les limites de quantification et de détection ont été respectivement 0.0011 et 0.0035µg/ml. Les comprimés sont satisfaisants au test de désagrégation et d'uniformité de masse, Le profil de dissolution est trouvé similaire à celui de référence avec f1=14.9507, f2=51.5295%. L'analyse des données de dégradation par le test du student prouve que parmi les conditions de stress étudiées, seulement le milieu alcalin qui a une influence sur la dégradation de la matière première mais pas sur les comprimés qui ont été stables. Conclusion : la méthode analytique est simple, précise et exacte. La formule testée est conforme. Le produit fini est stable.

Mots clés : Paracétamol, Stabilité, Dégradation forcée, validation, UV-visible, Formulation.