REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTRE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTEMENT DE GENIE CHIMIQUE

N° d'ordre : Série :

Mémoire de Master

Filière : Génie des Procédés Spécialité : Génie Chimique

DIMENSIONNEMENT D'UN PROCÉDÉ DE PRODUCTION D'ISOPROPYLBENZÈNE «CUMÈNE»

Dirigé par : Présenté par :

Dr. ZEHIOUA Raouf

KHALOUCHE Aziza

MERABET FILALI Fouzia

Année Universitaire: 2018/2019

Session: Juin

Sommaire	Page
Introduction générale	
Introduction générale	1
Chapitre 1 : Généralité sur le Cumène	
1.1. Introduction	2
1.2. Propriétés physico-chimiques	3
1.3. Différents procédés de fabrication du Cumène	3
1.4. Utilisations	5
1.5. Toxicité	6
1.6. Sécurité	6
Chapitre 2 : Description du procédé	
2.1. Introduction	8
2.2. Description du procédé	8
2.3. Chimie de procédé	11
2.3.1 Considération thermodynamique	11
2.3.1.1. Capacité calorifique	11
2.3.1.2. Enthalpie de la réaction	12
Chapitre 3 : bilans de matière	
3.1. Introduction	15
3.2. Bilan de matière sur chaque équipement	15
3.2.1. Bilan de matière sur le réacteur.	15
3.2.1.1. Bilan de matière global	16
3.2.1.2. Bilan de matière individuel	16
3.2.2 Bilan de matière sur le flash	20
3.2.2.1. Bilan de matière global	20
3.2.2.2. Condition physique dans le flash	20
3.2.2.3. Bilan de matière individuel	20
3.2.3 Bilan de matière sur la première colonne de distillation	22
3.2.3.1 Bilan de matière global	22
3.2.3.2 Bilan de matière individuel	22
3.2.3.3 Bilan de matière sur la deuxième colonne de distillation	23

	Chapitre 4 : dimensionnement du réacteur	
4.1.	Introduction	26
4.2.	Bilan de matière sur le réacteur.	27
4.3.	Propriétés du catalyseur utilisé	27
4.4.	Calcul des propriétés physiques du mélange gazeux	28
4.4.1.	Calcul de la masse volumique du mélange	28
4.4.2.	Facteur de compressibilité.	29
4.4.3.	Calcul du débit volumique du mélange.	30
4.4.3.1	Calcul de la viscosité du mélange	30
4.4.3.2	Approche de Lucas pour un mélange gazeux	32
4.4.4	Calcul de la conductivité thermique du mélange gazeux	33
4.4.5	Calcul du coefficient de diffusion	35
4.4.5.1	.Calcul du coefficient de diffusion du propylène à travers le mélange gazeux	35
4.4.5.2	Calcul du coefficient de diffusion de Kundsen	36
4.4.6.	Calcul du coefficient de diffusion effectif	36
4.5.	Calcul du volume réactionnel du réacteur.	37
4.5.1.	Bilan massique sur le réacteur	37
4.6.	Calcul de la masse du catalyseur	43
4.7.	Calcul de la quantité de chaleur dégagé par la réaction	44
4.8.	Calcul du coefficient de transfert de chaleur global	44
4.8.1.	Calcul du coefficient de transfert de chaleur du film coté lit	45
4.8.2.	Propriétés physiques du fluide d'échange	46
4.8.3.	Calcul du coefficient de transfert de chaleur du filme coté fluide d'échange	46
4.8.3.1	. Choix du positionnement des tubes et calcul des paramètres géométriques	47
4.8.3.2	. Calcul du diamètre équivalent	48
4.8.3.3	Calcul du coefficient de transfert coté fluide d'échange	48
4.9.	Calcul des pertes de charge dans le réacteur	50
	Chapitre 5 : Dimensionnement du flash	
5.1.Int	roduction	52
5.2.Ca	lcul du flash isotherme liquide-vapeur	52
5.3.Eq	uilibre liquide - vapeur pour obtenir la constante d'équilibre	54
5.3.1	Calcul de coefficient de fugacité à l'état de référence	56
5.3.2	Calcul du coefficient d'activité	57
5.3.3	Calcul du coefficient de fugacité en phase vapeur	57

5.4 Ré	sultats de calculs du flash	58
	Chapitre 6 : Dimensionnement des colonnes de distillation	
6.1.	Introduction	60
6.2.	Calcul d'une colonne de distillation à Plateaux	61
6.2.1	Coefficient de partage(K)	61
6.2.2	Volatilités relatives	61
6.2.3	Loi de Dalton	62
6.2.4	Loi de Raoult et d'Henry	62
6.2.5	Point de Bulle	62
6.2.6	Point de rosée	62
6.2.7	Clé légère	62
6.2.8	Clé lourde	63
6.2.9	Calcul des volatilités relatives	63
6.2.10	Equation de la courbe d'équilibre en fonction de la volatilité	63
6.3.	Bilan de matière	63
6.3.1.	Bilan de matière sur la section d'enrichissement	63
6.3.1.1.	Bilan globale	63
6.3.1.2.	Bilan de matière par rapport au constituant le plus volatil	64
6.3.2.	Bilan de matière dans la section d'épuisement	64
6.3.2.1.	Bilan globale	64
6.3.2.2.	Bilan de matière par rapport au constituant le plus volatil	64
6.4.	Étapes de dimensionnement de la 1 ^{ere} colonne de distillation	65
6.4.1.	Détermination du nombre d'étage minimal	65
6.4.2.	Détermination du taux de reflux minimal (r _m)	67
6.4.3.	Détermination du nombre d'étage théorique(Nt)	68
6.4.3.1.	Méthode analytique	68
6.4.3.2.	Méthode de Lewis et Matheson	68
6.4.4.	Détermination du nombre d'étage réel (Nr)	69
6.4.5.	Calcul de la quantité de chaleur à l'extraire du condenseur	71
6.4.5.1.	Bilan thermique	71
6.4.6.	Calcul de la quantité de chaleur à fournir au rebouilleur	73
6.4.7.	Calcul du diamètre de la colonne	74
6.4.7.1.	Calcul du débit de la vapeur (V)	75
6.4.7.2.	Détermination de la masse volumique de la vapeur	75

6.4.7.3. Détermination de la masse volumique du liquide	76
6.4.8. Détermination de la hauteur de la Colonne	76
6.5. Les résultats de Dimensionnement de la 2 ^{éme} colonne de distillation	77
Conclusion générale	
Conclusion générale.	84
Annexes	
Annexe 1 : Programmes Fortran	
Annexe 2 : Tableaux utilisées	
Bibliographie	
Bibliographie du chapitre 1	7
Bibliographie du chapitre 2.	14
Bibliographie du chapitre 3.	25
Bibliographie du chapitre 4	51
Bibliographie du chapitre 5	59
Bibliographie du chapitre 6	83

Tables des figures	Page
Figure 1.1 : Structure chimique de cumène.	2
Figure 2.1 : Schéma représentatif du procédé de production de cumène	10
Figure 3.1 : Schéma représentatif d'un réacteur.	16
Figure 3.2 : Schéma représentatif d'un Flash.	20
Figure 3.3 : Schéma représentatif d'une colonne de distillation	22
Figure 4.1 : Schéma d'un réacteur multitubulaire à lit fixe	27
Figure 4.3 : Positionnement des tubes suivant un pas triangulaire ou un pas carré	47

Résumé

Le Cumène est un produit pétrochimique utilisé dans la fabrication de plusieurs produits chimiques, notamment le phénol et l'acétone, qui est connu sous le nom l'isopropylbenzene.

Le but de ce mémoire consiste à dimensionné l'unité de production de Cumène qui contient tous les étapes essentiel pour produire le produit final de pureté 99.9 % en utilisant la programmation en Fortran. L'étude de dimensionnement concerne principalement les équipements suivantes : réacteur à lit fixe multitubulaire, flash isotherme, et enfin deux colonne de distillation.

Les mots clés: Cuméne, réacteur à lit fixe multitubulaire, flash isotherme, colonne de distillation.

الملخص

الكيمان هو احد البتروكيمياويات المستخدمة في تصنيع العديد من المواد الكيميائية ،بما في ذلك الفينول والأسيتون، و الذي يعرف باسم الإزوبروبيل بنزان.

ولذلك فان الغرض من هذه المذكرة هو حساب أبعاد و تصميم وحدة انتاج الكيمان، أين تطرقنا إلى جميع الخطوات الأساسية للحصول على المنتج النهائي بدرجة تصل الى99.9% و ذلك باستخدام الحساب الرقمي المعتمد على نظام البرمجة فورترن. عملية حساب أبعاد تشمل أساسا المعدات الأساسية التالية: مفاعل دو قاعدة ثابتة، وحدة فصل سائل-غاز متساوي درجة الحرارة، وحدتين للتقطير

الكلمات المفتاحية: كيمان، حساب الأبعاد، ، مفاعل كيميائي، وحدة فصل.