REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 03 FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE CHIMIQUE

Filière : Génie des procédés		Spécialité : Génie chimique
	Mémoire de Master	
Série :		
N° d'ordre :		

THEME

Etude expérimentale, modélisation et simulation par le logiciel Superpro designer du séchage des plantes médicinales aromatiques

Dirigé par : Présenté par :

Dr. M^{me} **CHIKHI.**F **MECHHOUD** Hadjer

Grade : Maitre de conférences A **KEDDOUS** Ikram

Année universitaire : 2018-2019

Session: Juin.

SOMMAIRE

Listes des figures	I
Listes des tableaux	V
Nomenclature	VI
Introduction générale	1
Références bibliographiques	3
Chapitre I Généralités sur les plantes médicinales aromatiques	
I.1 Introduction	4
I.2 Les plantes aromatiques	4
I.3 Les plantes médicinales	4
I.4 Mode d'obtention et récolte	4
I.5 Conservation des plantes médicinales	5
I.6 Usages médicinaux des plantes	5
I.7 Définition des principes actifs	5
I.7.1 Différents groupes des principes actifs	6
I.7.1.1 Polyphénols	6
I.7.1.2 Alcaloïdes	7
I.7.1.3 Terpènes et stéroïdes	8
I.8 les plantes étudiées	8
I.8.1 Verveine odorante (Aloysia citriodora)	8
I.8.1.1 Description botanique de A. citriodora	9
I.8.1.2 Classification botanique de A. citriodora	9
I.8.1.3 Compositions chimiques de A. citriodora	10
I.8.1.4 Utilisation de A. citriodora en médecine traditionnelle	10
I.8.2 Camomille romaine (Chamaemelum nobile)	10
I.8.2.1 Description botanique de Chamaemelum nobile	11
I.8.2.2 Classification botanique de Chamaemelum nobile	12
I.8.2.3 Compostions chimiques de Chamaemelum nobile	12
I.8.2.4 Utilisation de Chamaemelum nobile en médecine traditionnelle	12

I.8.3 Le Laurier (<i>Laurus nobilis</i>)	
I.8.3.1 Description botanique de Laurier	13
I.8.3.2 Classification botanique de Laurus nobilis	
I.8.3.3 Compositions chimiques de Laurus nobilis	14
I.8.3.4 Utilisation de Laurus nobilis en médecine traditionnelle	14
I.9 Stockage des plantes	15
Références bibliographiques	16
Chapitre II Généralités sur le séchage	
II.1 Définition	19
II.2 Modes de séchage	19
II.2.1 Séchage par convection	19
II.2.2 Séchage par conduction	20
II.2.3 Séchage radiatif	20
II.2.4 Séchage électrique	21
II.3 Caractéristiques de l'air de séchage :	21
II.3.1 Humidité absolue	21
II.3.2 Humidité relative	22
II.3.3 Degré de saturation	22
II.3.4 Températures caractéristiques de l'air humide	22
II.3.4.1 Température sèche (Température de bulbe sec)	22
II.3.4.2 Température humide (Température de bulbe humide)	22
II.3.4.3 Température de saturation adiabatique Tsa	22
II.4 Caractéristiques des solides humides	22
II.4.1 Porosité volumique d'un produit :	22
II.4.2 Humidité absolue d'un solide (teneur en eau à base sèche)	23
II.4.3 Description d'un solide humide	24
II.4.4 Hygroscopie	24
II.5 Cinétique de séchage	25
II.5.1 Interprétation des courbes de séchage	26
II.5.1.1 Zone 0 : Mise en régime	26

II.5.1.2 Zone I : Séchage au niveau de la surface	26
II.5.1.3 Zone II:	26
II.5.2 Vitesse de séchage	27
II.5.3 Capacité de séchage	27
II.5.4 Chaleur fournie par le système de chauffage	27
II.6 Différents types de sécheurs	28
II.6.1 Les sécheurs à tambour rotatif	28
II.6.2 Les sécheurs à lits fluidisés	29
II.6.3 Les étuves	29
Références bibliographiques	30
Chapitre III Généralités sur le logiciel SuperPro Designe	r
III.1 Introduction	32
III.2 Simulation dynamique des procédés	32
III.3 SuperPro Designer	33
III.4 Etude du procédé de séchage par le SuperPro Designer	33
Références bibliographiques	39
Chapitre IV Matériels et méthodes	
IV.1 Introduction	40
IV.2 Produits utilisés	40
IV.3 Matériels utilisés	41
IV.3.1 Le pilote de séchage	42
IV.3.1.1 Mesure de l'humidité relative	43
IV.3.1.2 Mesure de la température	43
IV.3.1.3 Méthodologie	43
IV.3.2 Séchage par étuve	43
IV.3.3 Diagramme enthalpique de l'air humide	45
IV.3.3.1 Diagramme de Mollier-Ramzine	45
Références bibliographiques	47
Chapitre V Résultats et discussions	
V.1 Introduction	48

V.2 Résultats expérimentaux	48
V.2.1 Séchage de la verveine	49
V.2.1.1 Influence de la vitesse de l'air sur le séchage de la verveine par le pilote à lit fluidisé	49
V.2.1.1.1 Influence de la vitesse de l'air sur la variation de la teneur en humidité de la vervein fonction du temps	ne en 49
V.2.1.1.2 Influence de la vitesse de l'air sur la vitesse de séchage de la verveine	50
V.2.1.1.3 Influence de la vitesse de l'air sur la chaleur fournie par le système de chauffage	51
V.2.1.2 Influence de la température de l'air sur le séchage par étuve de la verveine	52
V.2.1.2.1 Influence de la température de l'air sur la variation de la perte de masse de la vervein fonction du temps	ne en 53
V.2.1.2.2 Influence de la température de l'air sur la variation de l'humidité de la verveine en fondu temps	ction 54
V.2.1.2.3 Influence de la température de l'air sur la vitesse de séchage de la verveine	56
V.2.1.3 Influence de la teneur de l'humidité initiale sur le séchage par étuve de la verveine	57
V.2.1.3.1 Influence de la teneur de l'humidité initiale de la verveine sur la variation de la perte de men fonction du temps	nasse 57
V.2.1.3.2 Influence de la teneur de l'humidité initiale de la verveine sur la variation de sa teneu humidité en fonction du temps	ur en 58
V.2.1.3.3 Influence de la teneur de l'humidité initiale de la verveine sur la vitesse de	59
V.2.2 Séchage du laurier et de la camomille (PMA)	60
V.2.2.1 Influence de la vitesse de l'air sur le séchage des deux PMA par le pilote à lit fluidisé	60
V.2.2.1.1 Influence de la vitesse de l'air sur la variation de la teneur en humidité du laurier en fond du temps	ction 60
V.2.2.1.2 Influence de la vitesse de l'air sur la vitesse de séchage du laurier	61
V.2.2.2 Influence de la température sur le séchage par étuve du laurier et de la camomille	62
V.2.2.2.1 Influence de la température de l'air sur la variation de la perte de masse du laurier et camomille en fonction du temps	de la 62
V.2.2.2.2 Influence de la température de l'air sur la variation de la teneur en humidité du laurier et camomille en fonction du temps	de la 65
V.2.2.2.3 Influence de la température de l'air sur la vitesse de séchage du laurier et de la camomil fonction du temps	le en
V.2.2.3 Influence de la teneur de l'humidité initiale sur le séchage par étuve du laurier et de	67

V.2.2.3.1 Influence de la teneur de l'humidité initiale sur la variation de la perte de masse du laurie	er et
de la camomille en fonction du temps	67
V.2.2.3.2 Influence de la teneur de l'humidité initiale du laurier et de la camomille sur la vitesse	e de
séchage	69
V.3 Résultats de la simulation et de la modélisation du séchage des PMA	70
V.3.1 Variation de la perte de masse et de la teneur en humidité de la verveine en fonc	tion
du temps	71
V.3.2 Modélisation mathématique du séchage des PMA	74
V.3.2.1 Modélisation mathématique du séchage de la verveine	74
V.3.2.2 Modélisation mathématique du séchage de laurier	76
Références bibliographiques	77
Conclusion générale	78
Résumé	
Abstract	
الملخص	

Résumé

Dans ce travail, nous présentons une étude expérimentale, modélisation et simulation de la cinétique de séchage des plantes médicinales aromatiques (Le laurier, la camomille et la verveine) par deux procédés de séchage : un sécheur pilote à double lit et des étuves fonctionnant à différentes températures. La simulation de la cinétique de séchage a été réalisée par le logiciel SuperPro Designer et les résultats de la vitesse adimensionnelle de séchage ont été modélisés par un lissage des courbes caractéristiques de séchage (C.C.S).

Les PMA ont été séchées à des intervalles de teneurs en humidité, de températures et des vitesses de l'air allant de 50 à 270%, de 40 à 100 °C et de 2.6 à 6.2 m/s, respectivement. Les courbes expérimentales obtenues montrent la présence d'une vitesse de séchage décroissante. Cette vitesse augmente avec l'augmentation de la température de l'air et varie inversement avec le temps de séchage et la vitesse de l'air a un effet négligeable sur la variation de l'humidité des PMA en fonction du temps et les facteurs déterminants sont la température de l'air de séchage et la teneur en humidité initiale de la plante à sécher.

La représentation graphique de la variation adimensionnelle de la vitesse de séchage en fonction de la teneur en humidité nous a permis de déterminer les modèles mathématiques de la vitesse de séchage des PMA interprétés par un polynôme de 5ème ordre pour la verveine et de 3ème ordre pour le laurier, les deux modèles sont en en bon accord avec la littérature.

En perspectives, des techniques d'analyses des PMA séchées s'avèrent nécessaires pour voir l'effet thermique du procédé de séchage sur la qualité des PMA et sur leurs principes actifs.

Les mots clés

Séchage, PMA, pilote, étuve, simulation, SuperPro Designer, modélisation,