REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

Faculté de GENIE DES PROCEDES Département de GENIE CHIMIQUE

N° d'ordre : Série :

Mémoire de Master

Filière : Génie des Procédés Spécialité : Génie Chimique

Contribution à l'expérimentation, à la modélisation et à la commande de polyuréthane rigide préparé à partir de deux agents gonflants différents

Dirigé par :

Dr. Zahir Bakiri

Présenté par :

Benabdelkader Roumaissa Brioua Malika Boubidi Mounira

SOMMAIRE

Introduction générale	01
CHAPITRE I: Recherche bibliographique	e
I-1 Introduction	02
I-2 Historique des polyuréthanes	02
I-3 Généralités	03
I-3-1 Polymères	03
I-3-2 Polymérisation	04
I-3-3 Copolymérisation	05
I-4 Domaines d'application des polyuréthanes	05
I-4-1 Mousse flexible	06
I-4-2 Mousse Rigide	06
I-4-3 Elastomers, RIM	06
I-5 Chimie de polyuréthane	07
I-5-1 Isocyanates	07
I-5-2 Polyol	10
a) Polyéthers polyols	10
b) Polyesters polyols	10
I-5-3 Solvants	11
I-5-4 Catalyseurs	11
I-5-5 Agents gonflants	12
I-6 Structure chimique de polyuréthane	14
I-7 Conclusion	16
CHAPITRE II : Moyens expérimentaux et matériels de	caractérisation
Partie 1: Moyens expérimentaux	
II-1-1 Introduction	17
II-1-2 Réactifs et produits utilisés	17
II-1-2-1 Agents gonflants	17
II-1-2-2 Isocyanates	18
II-1-2-3 Polyol	19
II-1-3 Appareillage	20
II-1-4 Mode opératoire	20
Partie 2 : Matériels de caractérisation et techniques d'analyse	
II-2-1 Spectroscopie infrarouge (FT-IR)	23
II-2-2 Balayage différentiel calorimétrie (DSC)	24
II-2-3 Analyse thermogravimétrique (ATG)	25
II-2-4 Déflexion de la force de compression (CFD)	26
II-2-5 Facteur de rétrécissement (shrinkage)	27

CHAPITRE III : Expérimentation et caractérisation

Introduction	29
Partie 1: Formulation	29
III-1-1 Effet du ratio sur la réactivité de la réaction	29
III-1-2 Suivi de la hauteur de montée de mousse	31
III-1-3 Suivi de la température de la réaction	32
III-1-4 Suivi de la densité	33
Partie 2 : Caractérisation de la mousse polyuréthane	36
III-2-1 Résultats FT-IR des échantillons de polyuréthane	36
III-2-2 Résultats de balayage différentiel calorimétrie (DSC) des polyuréthanes	39
III-2-3 Résultats d'analyse thermogravimétrique(ATG) des échantillons de PU	40
III-2-4 Résultats de test mécanique compression(CFD)	42
III-2-5 Résultats de test de rétrécissement (shrinkage)	43
CHAPITRE IV : Modélisation et commande	
Partie 1 : Modélisation des polyuréthanes	
IV-1-1 Introduction	45
IV-1-2 Modèle cinétique pour formation d'uréthane	45
IV-1-3 Modèle de température pour la mousse PU	48
IV-1-4 Modèle de hauteur de la mousse PU	50
Partie 2 : Commande du processus de moussage	
IV-2-1 Introduction	51
IV-2-2 Développement de régulation d'un réacteur de polymérisation	51
IV-2-3 Développement le modèle mathématique	52
VI-2-4 Réglage du problème de contrôle	54
IV-2-5 Estimation de l'état	56
Conclusion générale	58
Références bibliographiques	
Annexe	
Résumé	

Résumé

Ce travail est basé sur la synthèse, la modélisation et la commande des mousses de polyuréthane rigide qui sont préparées à partir d'isocyanate et de polyol en utilisant deux agents gonflants différents (C₆ et N₅) et par une réaction d'addition. Le but de cette étude est de remplacer les agents gonflants néfastes (CFC, HFC) par d'autres agents moins néfastes pour obtenir un matériau ayant une bonne isolation thermique. Un dispositif et une démarche expérimentale spécifique ont été réalisés. Ils ont permis de réaliser certaines expérimentations sur la croissance des mousses polymères en termes de profils de température et de la densité. Nous avons présenté de plusieurs techniques d'analyse physicochimiques et mécaniques (IR, ATG, DSC, compression et schrinkage) afin de caractériser notre matériau.

Par la suite, plusieurs modèles de prédiction ont été détaillés. Ces modèles ont permis d'étudier la cinétique de polymérisation, la réactivité de la réaction et la hauteur de montée de mousse. Nous avons également étudié les paramètres cinétiques de la réaction qui ont lieu entre le polyol et l'isocyanate.

Enfin, nous avons essayé d'aborder la commande de la température et de la concentration du milieu réactionnel en utilisant la réaction de polymérisation des polyuréthanes dans un réacteur supposé parfaitement agité semi-fermé.

Mots clés: Réacteur semi-fermé, polyuréthane, caractérisation, modélisation, commande.

Summary

This work is based on the synthesis, modelling and control of rigid polyurethane foams that are prepared from isocyanate and polyol using two different blowing agents (C6 and N5) and an addition reaction. The purpose of this study is to replace harmful blowing agents (CFCs, HFCs) with other less harmful agents to obtain a material with good thermal insulation. A device and a specific experimental approach have been realized. They made it possible to carry out certain experiments on the growth of polymer foams in terms of temperature profiles and density. We presented several physico-chemical and mechanical analysis techniques (IR, ATG, DSC, compression and shrinkage) to characterize our material.

Subsequently, several prediction models were detailed. These models made it possible to study the kinetics of polymerization, the reactivity of the reaction and the rise height of the foam. We also studied the kinetic parameters of the reaction that takes place between the polyol and the isocyanate.

Finally, we have tried to approach the control of the temperature and the concentration of the reaction medium by using the polymerization reaction of the polyurethanes in a reactor supposedly perfectly stirred fed-batch.

Key words: Fed-batch reactor, polyurethane, characterization, modeling, control.