DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE CHIMIQUE

	Mémoire de Master	
Eiliàra : Cánia das procédés	Spácialitá : Cápia ahimigua	
Filière : Génie des procédés	Spécialité : Génie chimique	

N° d'ordre :........ Série :......

Thème

Mise en marche et étude de l'unité de transfert de chaleur à lit fluidisé H692

Dirigé par :Présenté par :Mme Mansouri NouraBourafa Yasmina

Grade MAA Lemouedda Selma

Année Universitaire : 2016/2017.

Session: (juin)

Table des matières

Introduction générale

Introduction Générale	13
Chapitre I: Partie théorique	
Introduction	16
1. Transfert de chaleur	16
1.1. Généralités	16
1.2. Les modes de transfert de chaleur	16
1.3. Les transferts thermiques dans le lit fluidisé	17
1.3.1. Définition de lit fluidisé	17
1.3.2. Définition de la fluidisation	17
1.4. Classification de solide utilisé dans le lit	18
2. Notions liées à la fluidisation	20
2.1. Fluidisation et débit de gaz	20
2.2. Fluidisation –perte de charge et viscosité	21
2.3. Conditions pour la réalisation d'un lit fluidisé	22
2.4. Caractéristiques de lits fluidisés	22
2.4.1. Densité ou masse spécifique apparente	22
2.4.2. Viscosité apparente et perte de charge	23
3. Coefficient de transfert de chaleur	24
4. La vitesse de fluidisation	25
4.1. Vitesse superficielle de fluidisation	25
4.2. Vitesse minimale de fluidisation	26
5. Influence des paramètres physiques sur les transferts de chaleur dans les lits	
fluidisésfluidisés	29
5.1. Influence du nombre de fluidisation	29
5.2. Influence de la fraction de vide	29
6. Les applications industrielles d'un lit fluidisé	31
7. Avantages et inconvénients d'un lit fluidisé	32

Chapitre II: Etude de l'unité

Introduction	35
1. Description du l'unité	35
2. Spécifications et caractéristiques techniques de l'unité	38
3. Les caractéristiques physico-chimiques de solide et gaz utilisés	39
4. Mise en marche de l'unité et mode opératoire	41
Chapitre III: Résultats et discussions	
Introduction	43
1. Résultats obtenus avec un lit d'Oxyde d'Aluminium	43
1.1. Calcul de coefficient de transfert de chaleur moyen	43
1.2. Calcul de la vitesse superficielle	45
1.3. Calcul de la vitesse minimale de fluidisation	46
1.3.1. Calcul théorique de vitesse minimal de fluidisation	46
1.3.2. Détermination expérimentale de vitesse minimale de fluidisation	47
1.4. Calcul de la viscosité apparente et la porosité de lit	48
1.5. Calcul de la perte de charge	49
2. Résultats obtenus avec un lit de sable	50
2.1. Influence de la nature de solide et la hauteur de lit	50
2.1.1. Première expérience (Sable de l'unité de filtration)	50
2.1.2. Deuxième expérience (Sable avec un diamètre de 0.000315m)	50
2.1.3. Comparaison entre les deux expériences	57
Chapitre 04: Rapport de TP; transfert de chaleur à lit fluidisé	
TP: Transfert de Chaleur à Lit Fluidisé	61
TP N 01:Etude de transfert de chaleur dans un lit fluidisé et détermination des différe	nts
paramètres	62
Le but	
1. Principe	62
2. Mode opératoire	
2.1. Obtention des résultats	
2.2. Détermination du coefficient de transfert de chaleur	64
2.3. Détermination de la vitesse superficielle	64

2.4.	Détermination de la vitesse minimale de fluidisation	65
2.5.	Détermination de la porosité de lit	65
2.6.	Détermination de la perte de charge	65
	02:Variation de coefficient de transfert de chaleur et la perte d	_
	······································	
1. le	solide utilisé	67
2. M	lode opératoire	67
3. Cl	hangement de hauteur	68
	Conclusion générale	
Conclu	usion générale	70
Refer	rence et Bibliographie	73
Anne	χe 01:Résultats avec un lit d'oxyde d'Aluminium	75
Anne	χe 02: Résultats avec un lit de sable	88
Anne	x e 03: Poster (JJCH4)	97
Résun	mé	98
اخص	Δ	00

Résumé:

Cette étude consiste à la mise en marche est l'étude expérimentale de l'unité de transfert de chaleur en lit fluidisé (H692), ou nous avons utilisé l'oxyde aluminium et le sable comme lit, L'objectif principal est basé sur plusieurs paramètresqui ont été étudiés tels que : le coefficient de transfert de chaleur, la vitesse superficielle, vitesse minimal de fluidisation, viscosité, la perte de charge, porosité.Nous avons aussi étudié la variation entre ces paramètre ou nous utilisons les équation théorique.

Enfin des expériences supplémentaires (changement de la hauteur du lit et de la nature de lit) ont été effectuées afin de comparer les résultats. Les résultats obtenus ont été en bon accord avec ceux rapportés dans la littérature.

Mots clés : Fluidisation, Lit Fluidisé, Oxyde d'aluminium, Coefficient de Transfert, Vitesse Minimale de Fluidisation, Perte de Charge.

ملخص:

تتعلق هده الدراسة بوضع خطة لسير جهاز نقل الحرارة في وسط مائع يتكون من جسم صلب (اوكسيد الالومنيوم) و جسم غازي (هواء). يتمثل الهدف الرئيسي في تطبيق خصائص الوسط المائع على اوكسيد الالومينيوم، فتحصلنا على النتائج التالية: معامل نقل الحرارة يزيد بزيادة سرعة تدفق الهواء ويتناقص نسبيا معزيادة درجة الحرارة، تناقص لزوجة الوسط مع سرعة تدفق الهواء لتباعد الجزيئات عن بعضها البعض وتوصلنا أيضاإلاأن الضياع في الضغط يبقي ثابت مع مرور الزمن مهما زادت سرعة تدفق الهواء.

وأخيرا قمنا بإجراء تجارب إضافية (تغير ارتفاع طبقة الرمل) من اجل مقارنة النتائج المتحصل عليها. فتبين أن النتائج المتحصل عليها من خلال جميع التجارب تتوافق مع بعض نتائج البحوث المدونة في المراجع.

الكلمات المفتاحية :الميوعة،الوسط المائع، أوكسيد الالومينيوم، معامل انتقال الحرارة، ادنى سرعة للميوعة، ضياع في الضغط.