### REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

#### **UNIVERSITE CONSTANTINE 3**



### FACULTE DE GENIE DE PROCEDES

## DEPARTEMENT DE GENIE PHARMACEUTIQUE

| N° d'ordre :<br>Série :        |                                      |
|--------------------------------|--------------------------------------|
| •                              | r l'obtention du diplôme de<br>aster |
| 1414                           | istei                                |
| Filière : Génie pharmaceutique | Spécialité :Génie pharmaceutique     |
|                                |                                      |

# Thème

Modélisation de la cinétique de dégradation photocatalytique du Phénol, Nitrophénol, Safranine O et Jaune basique 28 Par les modèles Langumir-Hinshelwood et Serpone et al.

| Dirigé par:        | Présenté par : |
|--------------------|----------------|
| Dr.BEKKOUCHE Salim | ALLAS Kaouther |
|                    | MAROUK Soumeya |
|                    | RIBAH Zineb    |

Session juin 2017.

| Table des matières                                                                    |    |  |
|---------------------------------------------------------------------------------------|----|--|
| Introduction générale                                                                 | 01 |  |
| CHAPITRE I                                                                            |    |  |
| Revue Bibliographique                                                                 |    |  |
| 1. Procédés d'Oxydation Avancée (POAs)                                                | 04 |  |
| 1.1 Généralités                                                                       | 04 |  |
| 1.2 Description et caractéristiques du radical hydroxyle 'OH                          | 05 |  |
| 1.3 Les procédés d'oxydation avancés POAs                                             | 08 |  |
| 1.3.1 Procédés non-photochimiques                                                     | 08 |  |
| 1.3.1.1 Procédé électrochimique                                                       | 08 |  |
| 1.3.1.2 Sonolyse                                                                      | 09 |  |
| 1.3.1.3 Radiolyse                                                                     | 09 |  |
| 1.3.1.4 Réaction de fenton (H <sub>2</sub> O <sub>2</sub> /Fe <sup>2+</sup> )         | 10 |  |
| 1.3.1.5 Peroxonation H <sub>2</sub> O <sub>2</sub> /O <sub>3</sub>                    | 10 |  |
| 1.3.2 Procédés photochimiques d'oxydation avancés                                     | 11 |  |
| 1.3.2.1 Photolyse de l'eau (UV/H <sub>2</sub> O) et des substances chimiques          | 11 |  |
| 1.3.2.2 Photolyse du peroxyde d'hydrogène (UV/H <sub>2</sub> O <sub>2</sub> )         |    |  |
| 1.3.2.3 Photolyse de l'ozone (UV/O <sub>3</sub> )                                     | 13 |  |
| 1.3.2.4 Procédé UV/H <sub>2</sub> O <sub>2</sub> /O <sub>3</sub>                      | 13 |  |
| 1.3.2.5 Procédé de photo-Fenton (UV/Fe <sup>2+</sup> /H <sub>2</sub> O <sub>2</sub> ) | 13 |  |
| 1.4 Photocatalyse hétérogène                                                          | 14 |  |
| 1.4.1 Historique                                                                      | 14 |  |
| 1.4.2 Les semiconducteurs actifs en photocatalyse                                     | 15 |  |
| 1.4.3 Principe de la photocatalyse                                                    | 15 |  |
| 1.5 Facteurs influençant la photocatalyse hétérogène                                  | 16 |  |
| 1.5.1 Influence de la concentration en catalyseur                                     |    |  |
| 1.5.2 Influence de la concentration du polluant modèle de Langmuir-Hinshelwood        | 17 |  |
| 1.5.3 Influence du pH                                                                 | 17 |  |
| 1.5.4 Influence du flux lumineux                                                      | 18 |  |
| 1.5.5 Influence de la structure cristalline                                           | 18 |  |
| 1.5.6 Influence de la surface spécifique et de la taille des particules               | 19 |  |

| 1.5.7 Influence de la composition aqueuse                                              |    |
|----------------------------------------------------------------------------------------|----|
| 1.5.8 Influence de l'oxygène dissous                                                   |    |
| 1.5.9 Influence de la température                                                      |    |
| 1.6 Avantage et limites d'application                                                  |    |
| 2. Processus d'adsorption                                                              | 20 |
| 2.1 Définition                                                                         | 20 |
| 2.2 Différentes étapes de l'adsorption                                                 |    |
| 2.3 Mode d'adsorption                                                                  |    |
| 2.3.1 Physisorption                                                                    |    |
| 2.3.2 Chimisorption                                                                    | 21 |
| CHAPITRE II                                                                            |    |
| Procédures Expérimentales et Méthodes D'analyse                                        |    |
| 1. Introduction                                                                        | 23 |
| 2. Réactifs                                                                            | 23 |
| 2.1 Phénol                                                                             |    |
| 2.2 Nitrophénol                                                                        |    |
| 3. photocatalyseurs                                                                    |    |
| 4. Dispositifs expérimentaux                                                           |    |
| 4.1 Montage utilisé                                                                    |    |
| 4.1.1 Réacteur                                                                         |    |
| 4.1.2 Suntest CPS+                                                                     |    |
| 4.2 Protocole expérimental                                                             |    |
| 4.2.1 Préparation des solutions aqueuses des polluants                                 |    |
| 4.2.2 Méthodes d'analyses                                                              |    |
| Chromatographie à haute performance (HPLC)                                             | 28 |
| Analyses par spectrophotométrie UV-Visible                                             | 30 |
| Spectre UV-Visible du phénol                                                           | 31 |
| Spectre UV-Visible du Nitrophénol                                                      | 32 |
| 5. Dégradation photocatalytique de Phénol et de Nitrophénol dans une suspension        |    |
| aqueuse de TiO <sub>2</sub> P25, ZnO et Fe <sub>2</sub> O <sub>3</sub>                 |    |
| 5.1 Effet de la concentration initial sur la cinétique d'oxydation photocatalytique du |    |

| Phénol dans un Suntest CPS+ dans une suspension aqueuse de ZnO et de Fe <sub>2</sub> O <sub>3</sub> |    |
|-----------------------------------------------------------------------------------------------------|----|
| 5.2.Effet de la concentration initial du Nitrophénol sur la cinétique d'oxydation                   | 36 |
| photocatalytique                                                                                    |    |
| CHAPITRE II                                                                                         |    |
| Modélisation des résultats expérimentaux                                                            |    |
| 1. Introduction                                                                                     |    |
| 2. Modélisation de la cinétique de dégradation photocatalytique                                     |    |
| ❖ Modèle de Langmuir-Hinshelwood (L-H) (Okitsu)                                                     | 41 |
| ❖ Modèle de Serpone et al                                                                           | 42 |
| 2.1 Modélisation des résultats expérimentaux du phénol                                              | 43 |
| 2.1.1 Vitesse initial de la dégradation photocatalytique                                            | 43 |
| 2.1.2 Constantes de la Vitesse de dégradation                                                       | 44 |
| 2.1.3 Application des modèles d'Okitsu et Serpone et al. à la modélisation de la cinétique          | 45 |
| de dégradation                                                                                      |    |
| 2.2 Modélisation des résultats expérimentaux du Nitrophénol                                         | 47 |
| 2.2.1 Vitesse initial de la dégradation photocatalytique                                            | 47 |
| 2.2.2 Constantes de Vitesse de la photocatalyse                                                     | 48 |
| 2.2.3 Application des modèles d'Okitsu et Serpone et al. à la modélisation de la cinétique          |    |
| de dégradation                                                                                      |    |
| 2.3 Modélisation des résultats expérimentaux de la SO                                               | 52 |
| 2.3.1 Vitesse initial de la dégradation photocatalytique                                            | 52 |
| 2.3.2 Détermination des constantes de vitesse de la dégradation                                     | 53 |
| 2.3.3 Application des modèles d'Okitsu et Serpone et al. à la modélisation de la cinétique          | 54 |
| de dégradation                                                                                      |    |
| 2.4 Modélisation des résultats expérimentaux du colorant (BYE 28)                                   | 56 |
| 2.4.1Vitesse initial de la dégradation photocatalytique                                             | 56 |
| 2.4.2 Constantes de la Vitesse de dégradation                                                       | 56 |
| 2.4.3 Application des modèles d'Okitsu et Serpone et al. à la modélisation de la cinétique          | 58 |
| de dégradation                                                                                      |    |
| Conclusion générale                                                                                 | 63 |
| Annexes                                                                                             |    |

| LISTE DES FIGURES |                                                                                     |     |
|-------------------|-------------------------------------------------------------------------------------|-----|
|                   | CHAPITRE I                                                                          |     |
|                   | Revue Bibliographique                                                               |     |
| Figure I.1        | Application des différentes techniques de traitement des eaux en fonction           | 5   |
|                   | de la charge organique et du volume à traiter.                                      |     |
| Figure I.2        | Application des techniques de traitement des eaux usées selon leurs                 | 5   |
|                   | teneurs en DCO.                                                                     |     |
| Figure I.3        | Principe de la photocatalyse. le processus éléctronique.                            | 16  |
| Figure I.4        | Influence du flux photonique sur la cinétique de dégradation                        | 18  |
|                   | photocatalytique.                                                                   |     |
|                   | CHAPITRE II                                                                         |     |
|                   | Procédure Expérimentale Et Méthodes D'analyse                                       |     |
| Figure II.1       | photocatalyseurs utilisés : a : TiO2, b : ZnO, c : Fe <sub>2</sub> O <sub>3</sub> . | 24  |
| Figure II.2       | Réacteur utilisé.                                                                   | 26  |
| Figure II.3       | Appareil SUNTEST CPS+.                                                              | 27  |
| Figure II.4       | Appareil HPLC Shimadzu.                                                             | 29  |
| Figure II.5       | chromatogramme HPLC du phénol.                                                      | 29  |
| Figure II.6       | Suivi de la dégradation photocatalytique du phénol par                              | 30  |
|                   | spectrophotométrie UV-Visible et par HPLC.                                          |     |
| Figure II.7       | Spectrophotométrie UV-Visible, type (JASCO V-630).                                  | 32  |
| Figure II.8       | Spectre UV du Phénol à 50 mg L <sup>-1</sup> .                                      | 32  |
| Figure II.9:      | spectre UV-Visible de Nitrophénol.                                                  | 33  |
| Figure II.10      | Courbes d'étalonnages de phénol(a) et de Nitrophénol(b).                            | 33  |
| Figure II.11      | Influence de la concentration initiale de Phénol sur la cinétique de                | 2.5 |
|                   | dégradation photocatalytique du Phénol dans une suspension aqueuse de :             | 35  |
|                   | a : ZnO, b : Fe2O3.                                                                 |     |
| Figure II.12      | Influence de la concentration initiale de Nitrophénol sur la cinétique de           | 37  |
|                   | dégradation photocatalytique du Nitrophénol dans une suspension                     |     |
|                   | aqueuse de (TiO2P25 (a), ZnO (b) et Fe <sub>2</sub> O <sub>3</sub> (c)).            |     |
|                   |                                                                                     |     |

#### Résumé

Cette étude nous a permet de mettre en évidence l'efficacité et l'applicabilité d'un procédé d'oxydation avancée, pour le traitement des eaux polluées par des composés organiques chimiques qui doivent être réduits ou éliminés complètement. Le travail présenté dans ce mémoire a eu pour but de contribuer à l'étude de la dégradation du Nitrophénol et du phénol par la photocatalyse hétérogène (UV/catalyseur). Nous avons travaillé à une température ambiante dans des suspensions aqueuses de TiO<sub>2</sub>, ZnO et Fe<sub>2</sub>O<sub>3</sub>.

Dans le premier chapitre, une étude bibliographique sur les AOPs utilisé actuellement pour la minéralisation des polluants organiques ont été menés. Dans le second chapitre, nous avons décrit les méthodes expérimentales et les différentes techniques analytiques utilisées au cours de cette étude, ainsi que les résultats expérimentaux obtenues. La dégradation du Nitrophénol et du phénol est effectuée par l'action Oxydante des radicaux Hydroxyles produits dans le milieu à traiter, ces radicaux sont Capable de dégradé la quasi-totalité des polluants organiques persistants à cause de leur pouvoir Oxydant très élevé, de leur réactivité et de leur non-sélectivité Vis-à-vis des substances Organiques.

Dans le troisième chapitre, La modélisation du processus photocatalytique de dégradation des polluants apporter dans ce mémoire (SO, BYE28, Nitrophénol, Phénol) a été examinée vis à vis des différents modèles issus de la littérature : le modèle classique de Langmuir-Hinshelwood, et de Serpone. Une corrélation satisfaisante a été trouvée entre les constantes de vitesse de photodégradation des polluants avec la concentration initiale, dont il permet de prévoir l'emplacement de la dégradation photocatalytique.

Key Words: Photocatalyse; AOPs; Catalyseur; Adsorption; dégradation.