REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DE CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTMENT DE GENIE PHARMACEUTIQUE

	Mémoire de Master
Serie:	
N° d'ordre:	

Filière : Génie des procédés Spécialité : Génie pharmaceutique

Thème

Etude de l'influence de la variation de la température sur le coefficient de répartition non aléatoire du modèle NRTL à l'aide d'un Algorithme Génétique

Dirigé par : Présenté par :

Bouneb Nardjess Belounis Fatiha

Grade: MCB Boulaoumat soufyane

Kraifa Samia

Année universitaire: 2015/2016

Session: Juin

Sommaire

Titre	Page
Liste des tableaux	
Liste des figures	
Nomenclature	
Introduction générale	01
Référence bibliographiques	03
Chapitre I	
Généralité sur les équilibres thermodynamiques	
I.1.Introduction	04
I.2. La fugacité.	04
I.3. L'équilibre liquide-vapeur	05
I.3.1. L'équilibre liquide-vapeur pour un mélange binaire	05
I.3.1.1. L'approche symétrique	06
I.3.1.2. L'approche dissymétrique	07
I.4. Equilibre liquide-liquide	07
I.4.1. Equilibre de phase liquide	07
I.4.2. condition d'équilibre liquide-liquide	07
I.5. L'équilibre liquide-solide	08
I.5.1. L'expression de la solubilité	09
I.5.2. Enthalpie libre des coprs purs à l'état liquide et solide	11
I.5.3. Les différents types de diagrammes liquide-solide	14
I.5.4. Diagramme simple avec un eutectique	14
Référence bibliographiques	16
Chapitre II	
Modeles thermodynamiques pour le calcul des équilibres entre phases	
II.1. Introduction	18
II.2. Les modèles de calcul de coefficient d'activité	18

II.3. Modèles semi-prédictifs.	19
II.3.1. Modèle de Wilson	19
II.3.2. Modèle NRTL	20
II.3.3. Modèle UNIQUAC	23
II.4. Modèles prédictifs	24
II.4.1. Modèle UNIFAC	24
II.5. Conclusion	26
Références bibliographiques.	27
Chapitre III	
Méthode d'optimisation « Algorithme Génétique »	
III.1. Introduction	29
III.2. Définition d'un AG.	29
III.3. Organisation des algorithmes génétiques.	30
III.4. fonctionnement d'un algorithme génétique	30
III.5. Opérateurs génétiques	31
III.5.1. Génération de la population initiale.	31
III.5.2. La séléction	31
III.5.3. Le croisement	33
III.5.4. La mutation	34
III.5.5. Remplacement de la population	35
III.6. Les paramètres d'un AG	36
III.6.1. La taille de la population	36
Références bibliographiques	37
Chapitre IV	
Résultats et discussions	
IV.1. Introduction	38
IV.2. Problématique	38
IV.3. Modélisation	39
IV.3.1 Les paramètres à optimiser	39
IV. 3.2Fonction objectives	39

IV.4.Algorithme d'estimation des paramètres d'interaction et des solubilités	40
IV.5. Systèmes considérés	41
IV.6.Résultats et discussion.	43
IV.6.1.La classe des hydrocarbures	43
IV.6.1.1 Système 1: Nitrogène(1)-Méthane(2)	43
IV.6.1.2. Système2 :Iso-Butane (1)- Dioxide de Carbone (2)	44
IV.6.1.3. Système 3: Oxygène(1)-Ethyle(2)	45
IV.6.1.4 Système 4 : Oxygène(1)-Nitrogène (2)	46
IV.6.1.5 .Système 5 : Nitrogène(1)-Xénon(2).	47
IV.6.1.6 Système 6 : Oxygène(1)-Argon(2).	48
IV.6.1.7 Système 7 : $C_2H_4(1)-C_2H_6(2)$	49
IV.6.1.8 Système 8 :Méthane(1)-Krypton(2).	50
IV.6.1.9 Système 9 : Naphtalène(2)-Acide acétique(1)	51
IV.6.1.10 Système 10 : Naphtalène(2)- Aniline(1)	52
IV.6.1.11 Système 11 : Naphtalène(2)-Phénol(1)	53
IV.6.1.12 Système 12 : Naphtalène(2)-Propanone(1)	54
IV.6.1.13 Système 13 : Naphtalène(2)-Tetrahydrofurane (1)	55
IV.6.1.14 Système 14 : Acénaphtalène(2)-dichlorobenzène (1)	56
IV.6.2.La classe des composés pharmaceutiques	57
IV.6.2.1 :Système 1 :Ibuprofène(2)-eau(1)	57
IV.6.2.2 : Système 2 :Ibuprofène(2)-Heptane(1)	58
IV.6.2.3 : Système 3 :Ibuprofène(2)-Isopropyl-Acetate (1)	59

اجراءات القياس التجريبية معقدة و مكلفة للعديد من الانظمة الكيميائية حيث الحاجة الى تطوير النماذج التنبئية يمكن الاعتماد عليها. و قد وضعت العديد من النماذج الحرارية المتطورة و قد ذكرت في الأدب،من بينها نموذج NRTL (اثنين من السوائل غير عشوائية) الذي أظهر قدرة كبيرة على تحقيق التوازن.

نموذج يتطلب توفر ثلاثة معابير لنظام ثنائي، كل من المعلمات من التفاعلات الجزيئية ومعامل التوزيع غير عشوائي. اتخذ قيمة هذا الأخير بشكل مستقل عن درجة الحرارة وحتى طاقات التفاعل في معظم الأبحاث التي أجريت.

واستنادا إلى مفاهيم الديناميكا الحرارية ،استلهم الفكرة الجديدة "دراسة اعتماد التوزيع غير عشوائي من معامل درجة الحرارة". ". والغرض الرئيسي من هذه الدراسة هو تحسين مرونة وموثوقية نموذج NRTL

عن طريق الحد من عدد من المعاملات ليكون الأمثل. لهذا، وقد تم دراسة 25 نظاما من التوازن سائل-صلب عن طريق حساب الذوبان في درجات حرارة مختلفة. وأظهرت النتائج التي تم الحصول عليها باستخدام الخوارزمية الجينية توافق بين البيانات التجريبية والذوبانية المحسوبة.

الكلمات المفتاحية: ؛معاملات الجذب؛ الخوار زمية الجينية؛ مرحلة التوازن؛ معامل النشاط. NRTL

Résumé

Les procédures de mesure expérimentale sont complexes et coûteuses pour un grand nombre de systèmes chimiques d'où la nécessité de développement des modèles prédictifs fiables. Un grand nombre de modèles thermodynamiques ont été développés et sont rapportés dans la littérature. Parmi ceux-ci le modèle NRTL (Non Randomn Two Liquids) a montré une grande capacité de prédiction de données d'équilibre.

Le modèle NRTL nécessite la disponibilité de trois paramètres pour un système binaire : les deux paramètres d'interactions moléculaires et le coefficient de répartition non aléatoire .La valeur de ce dernier a été prise indépendante de la température et même aux énergies d'interaction dans la plupart des travaux de recherche réalisés.

En se basant sur les notions de la thermodynamique, la nouvelle idée « l'étude de la dépendance du coefficient de répartition non aléatoire de la température » a été inspirée. Le but principal de cette étude est l'amélioration de la flexibilité et la fiabilité du modèle NRTL en réduisant le nombre des paramètres à optimiser. Pour cela, 25 systèmes d'équilibre liquide -solide ont été étudié en calculant les solubilités pour différentes températures. Les résultats obtenus à l'aide d'un algorithme génétique ont montré une concordance entre les données expérimentales et les solubilités calculées.

Mots clés : NRTL; Paramètre d'interaction; Algorithme génétique; Equilibre de phases ; Coefficient d'activité