REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE3

FACULTE

DE GENIE DES PROCEDES

N° d'	ordre	:		
Série	:			

Mémoire de Master

Filière : Génie des procédés Spécialité : Génie pharmaceutique

THEME

ELIMINATION DU DICLOFENAC ET LE BLEU DE METHYLENE PAR ADSORPTION SUR LA BENTONITE INTERCALEE

Dirigé par : Présenté par :

M^{me} BELAIB FOUZIA BRAMKI Maria

Grade: MCA BOUFEDDAH BADISSI Ryma

RAMDANE Meriem

Année Universitaire: 2015/2016

Session: juin

Sommaire

Introduction générale

Chapitre I

Etude bibliographique

Partie A : Présence des substances pharmaceutique dans l'environnement
Introduction
I.Produit pharmaceutique dans l'environnement aqueux2
I.1 Contamination des milieux aquatiques2
I.1.a Dans Les sédiments
I.1.b Dans Le milieu marin
I.1.c Dans l'eau potable
I.2 Devenir des médicaments dans l'environnement3
I.3 L'origine de la pollution aqueuse
I.4 Principaux produits pharmaceutiques retrouvés dans les eaux4
I.5 Risque de la présence des produits pharmaceutiques6
I.5.1 Les antis inflammatoires non stéroïdiens (AINS)6
I.6 Le diclofénac
I.6.1 Définition7
I.6.2Synthèse du diclofenac8
I .6.3 Les caractéristiques physico-chimiques du diclofénac9
Partie B : Présence du bleu de méthylène dans les milieux aquatique.
Introduction
I.7 Les colorants synthétiques10
I.8 Classification des colorants
I .8.1 Classification chimique11
I.8.2 Classification tinctoriale
I.9 Toxicité des milieux aquatiques par les rejets industriels11
I .10 Valeurs limitent des paramètres de rejets d'effluents textiles12
I.11 Le bleu de méthylène12
Référencebibliographiques

Chapitre II

Adsorption et adsorbants

Introduction1	18
II.1 Description du phénomène d'adsorption1	18
II.1.1 Définition de l'adsorption	18
II.2 Types de l'adsorption	19
II.2.a L'adsorption chimique	19
II.2.b L'adsorption physique2	20
II.3 Les facteurs influençant l'adsorption2	20
II.3.1 La température2	20
II.3.2 La nature de l'adsorbant	21
II.3.3 La nature de l'adsorbat	21
II.3.4 L'orientation des molécules	.21
II.3.5 La surface spécifique	21
II.3.6 La polarité de l'adsorbant	23
II.4 les étapes et mécanisme du phénomène d'adsorption	.24
II.4.1 Cinétique basé sur la diffusion	24
II.5Isothermes d'adsorption	25
II.6 Modélisation de l'isotherme d'adsorption	25
II.6.a Le modèle de langmuir	.25
I.6.b Le modèle de freundlich	.25
II.6.c Isotherme de BET (Brunauer, Emmett,et Teller	.25
II.7 les adsorbants	26
Introduction	26
II.7.1 Principaux adsorbants	26
II.7.1.a Charbons actifs	26
II.7.1.b Les zéolithes	26
II.7.1.c Adsorbants minéraux	27
II.7.1.d Adsorbants organiques	27
II.7.1.e les argiles	27
II.7.2 Les avantages d'utilisation des argiles	.28

II.7.3 Familles des argiles	
II.7.3.a La kaolinite (d=7A°)	
II.7.3.b Les montmorillonites ($d=10A^{\circ}$)	
II.7.3.c Les illites (d=10A°)29	
II.7.3.d les argiles fibreuses	
II.8 la bentonite31	
II.8.1 Structure de la bentonite31	
II.8.2 Microstructure de labentonite31	
a.Lefeuillet32	
b.La particule primaire outactoïde33	
c.L'agrégat33	
d.L'espaceinterfoliaire33	
e.L'espaceinterparticulaire33	
f.L'espaceinteragrégat33	
II.8.3 Origine de la bentonite33	
II.8.4 Types de bentonites	
II.8.4.a Bentonites naturelles34	
II.8.4.bBentonites activées34	
II.9 Propriétés de la bentonite34	
II.9.1 l'hydratation interne ou gonflement34	
II.9.2 cations échangeables et adsorption35	
II.10 Travaux réalisés sur l'élimination du diclofénac et le bleu de	e
méthylène36	
Références bibliographiques41	

Résumé:

La demande croissante des adsorbants utilisés dans les procédés de protection de l'environnement a fait que leur prix coûte de plus en plus cher ce qui suscite une recherche complémentaire pour trouver de nouveaux matériaux adsorbants moins coûteux à partir de matières naturelle disponible à titre d'exemple les argiles.

Dans notre travail, nous avons utilisé la bentonite qui a subit une intercalation ensuite elle est appliquée pour l'élimination de deux polluants : le diclofenac et le bleu de méthylène. Différents paramètres expérimentaux ont été testés : l'effet de temps de contact, pH, température et la concentration initiale d'adsorbat. Les résultats expérimentaux ont montré que l'équilibre d'élimination des polluants est atteint après 20 et 25 minute pour le BM et le diclofenac respectivement.

L'étude des propriétés texturales du matériau ont été calculées tels : le pH_{pzc} , la surface spécifique, le volume poreux, la masse volumique réelle et apparente, et les groupements fonctionnels ont été identifiés par infrarouge et par la méthode de Boehm .

L'application du modèle cinétique a montré que le processus d'adsorption de ces polluants (BM et DCF) par la bentonite intercalé suit une cinétique du pseudo second ordre. Le phénomène d'adsorption régissant ce processus est décrit par le modèle de Langmuir et Freundlich pour le bleu de méthylène et le diclofenac respectivement. les paramètres thermodynamiques aussi ont été déterminés.

Mots clés :Bentonite intercalée –adsorption–diclofénac- bleu de méthylène –isotherme – cinétique

ازداد الطلب على المد مصات المستعملة لحماية البيئة، غير أن سعرها الثمين دفعنا للبحث المتواصل من أجل إيجاد مواد مدصة جديدة ذات سعر أقل و ذلك من خلال مواد طبيعية متوفرة و المتمثلة في الطين.

في عملنا هذا استعملنا البنتونيت الخاضع للإقحام و بعد ذلك قمنا بتطبيقه في القضاء على اثنين من الملوثات: ديكلوفيناك، والميثيلين الأزرق.

تم اختبار عدة عوامل تجريبية:

تأثير وقت الاتصال ، درجة الحموضة، درجة الحرارة، التركيز الابتدائي للمدمص وأظهرت النتائج التجريبية أن توازان إزالة الملوثات بعد 20و 25 بالنسبة للديكلوفيناك و الميثيلين الأزرق بالترتيب.

الخصائص التكوينية للمادة درست بحساب: ، pH النقطة صفر ، المساحة النوعية، حجم المسامات، الكثافة الحقيقية والظاهرة، وحددت المجموعات بواسطة الأشعة تحت الحمراء وطريقة Boehm.

أظهر تطبيق المعادلة الحركية أن عملية امتصاص هذه الملوثات (BMDCF) بواسطة البنتونيت المقحم يتبع حركة من الدرجة الثانية. ظاهرة الادمصاص المتحكمة في هذه العملية كتبت بواسطة نموذجلانغمير و فراندليشمن أجل BM و DCFعلى التوالي كما تم تحديد العوامل الحرارية.

الكلمات المفتاحية: البنتونيت، ادمصاص، ديكلوفيناك، الميثيلين الأزرق، ايزوتارم، حركة.