REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE RECHERCHE

SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER, CONSTANTINE 03

FACULTE DE GENIE DES PROCEDES

DEPARTEMENT DE GENIE DES PROCEDES DE L'ENVIRONNEMENT

N° d'ordre :	
Série :	

Mémoire

PRESENTE POUR L'OBTENTION DU DIPLOME DE MASTER

EN GENIE DES PROCEDES

OPTION: GENIE DES PROCEDE DE L'ENVIRONNEMENT

IMPACT DU CET EL HERIA CONSTANTINE SUR L'ENVIRONNENT

(POLLUTION PAR METAUX LOURDS)

Dirigée par : Présenté par :

BENNADJI Kheira MAHAMAT ADJI Mahamat

MATMAT Sara

TAOUTAOU kaouther

Session: Juin 2017-2018

Liste des Figures

Liste des Tableaux

Parti I	: synthès	se bibliograp	hique
---------	-----------	---------------	-------

Introduction Générales	1
CHAPITRE I : DECHETS ET CET	
I.1.les déchets urbains	3
I.1.1.Définition des déchets urbains	3
I.1.2.Classification des déchets urbains	4
I.1.3.Caractéristiques des déchets urbains	4
I.1.3.1.La composition	4
I.1.3.2.Densité (ou masse volumique)	5
I.1.3.3.Humidité	5
I.1.3.4.Rapport Carbone / Azote (C/N)	6
I.1.4.les grandes procédés de traitement des déchets	6
I.1.4.1.Le compostage.	6
I.1.4.2.L'incinération.	6
I.1.4.3.La mise en décharge contrôlé	6

I.2. les centre d'enfouissement technique6
I.2.1.Définition de CET6
I.2.2.Classification des décharges
I.2.2.1.Les CET de classe I
I.2.2.2.Les CET de classe II
I.2.2.3.Les CET de classe III
I.2.3.Fonctionnement d'une décharge contrôlé
I.2.4.Les avantages et les inconvénients d'une décharge
I.2.5.Nuisances générées par un CET9
I.2.5.Les principes polluants générés par les centres de stockage des déchet.s9
I.2.5.1.Le biogaz9
I.2.5.2.le lixiviat
CHAPITRE II : LIXIVIAT D'UNE DECHARGE
II.1.Définition de lixiviat
II.2.Mécanisme de formation de lixiviat
II.3.Types de lixiviat

II.3.1.Les lixiviats jeunes (< 5ans)
II.3.2.Les lixiviats intermédiaires
II.3.3.Les lixiviats stabilisés (> 10 ans)
II.4.Caractéristique de lixiviat
II.5.Impact de lixiviat sur l'environnement et la santé humaine
II.6.Gestion des lixiviats
II.6.1.Drainage et collecte des lixiviats
II.6.1.Stockage des lixiviats
CHAPITRE III : TRAITEMENT DE LIXIVIAT
III.1.Introduction
III.2.Les procédés de traitements biologiques
III.3.Les microorganismes et leur rôle dans le traitement
III.3.1.Les microorganismes
III.3.2.Le rôle de microorganisme dans le traitement
III.3.3.Facteur limitant la biodégradabilité
III.3.3.1.Les métaux lourds

III.3.3.2.Les autres facteurs limitant (pH, température, salinité)
III.4.Traitement par lagunage
III.5.Lagunage naturel
III.6.Paramètre de fonctionnement de lagunage
CHAPITRE IV : METAUX LOURDS
IV.1.Généralités sur les métaux lourds
IV.1.1.Définition des métaux lourds
IV.1.3.Source des métaux lourds
IV.1.4.La toxicité des métaux lourds
IV.1.5.Effets des métaux lourds
IV.1.5.1.Effets des métaux lourds sur le milieu aquatique
IV.1.5.2.Effets des métaux lourds sur la santé humaine
IV.1.6.Utilisation des métaux lourds
IV.2.Etude particulière des métaux lourds étudiés24
IV.2.1.Zinc
IV.2.1.1.Propriété de zinc

IV.2.1.2.Source de zinc
IV.2.1.3.Toxicité de zinc
IV.2.2.Cadmium
IV.2.2.1.Propriété cadmium
IV.2.2.2.Source de cadmium
IV.2.2.3.Toxicité de cadmium
IV.2.3.Chrome
IV.2.3.1.Propriété de chrome
IV.2.3.2.Source de chrome
IV.2.3.3.Toxicité de chrome
IV.2.4.LE CUIVRE
IV.2.4.1.Propriété de cuivre
IV.2.4.2.Source de cuivre
IV.2.4.3.Toxicité de cuivre
IV.2.5.Plomb
IV.2.5.1.Propriété de Plomb

IV.2.5.2.Sources de Plomb
IV.2.5.3.La toxicité du plomb
IV.2.6.Nickel
IV.2.6.1.Propriété de Nickel
IV.2.6.2.Source de Nickel
IV.2.6.3.Toxicité de Nickel
Parti II : Matériel et méthodes
CHAPITRE V : DESCRIPTION DE LA ZONE D'ETUDE
V.1.Situation géographique29
V.2.DONNEES CLIMATOLOGIQUES
V.2.1.Précipitations30
V.2.2.Températures31
V.2.3.Vent et pression
V.2.4.Neige et Gelées
V.3.DONNEES PHYSIQUES33
V.3.1.Relief et morphologie

V.3.3.Pédologie
V.3.4.Géologie33
V.3.5.Forêts
V.3.6.La Faune
V.3.7.La Flore
V.4.Caractéristique de CET Boughareb
CHAPITRE VI : TECHNIQUE DE DOSAGE ET D'ANALYSES DES METAUX
VI.1.Choix et mode de lavage des flacons pour l'échantillonnage
VI.2.Echantillonnage37
VI.2.1.Points d'échantillonnages
VI.2.1.Points d'échantillonnages
VI.2.1.Points d'échantillonnages
VI.2.1.Points d'échantillonnages

VI.3.2.1.Filtration des échantillons
VI.3.2.2.Acidification et minéralisation
VI.4.Dosage des métaux lourds par Spectrométrie d'absorption atomique42
VI.4.1.Spectrométrie d'absorption atomique (SAA)
VI.4.2.Appareillage
VI.4.3.Les lampes à cathode creusent
VI.4.4.Nébuliseur
VI.4.5.La flamme (atomiseur)
VI.4.6.Monochromateur
VI.4.7.Détecteur et dispositif de mesure
VI.5.Etalonnage
VI.5.1.Cuivre
VI.5.2.Plomb
VI.5.3.Chrome
VI.5.4.Nickel
VI 5 5 7ino

VI.5.6.Cadmium50
CHAPITRE VII : RESULTATS ET DISCUSSIONS
VII.1.La couleur et l'odeur
VII.2. Résultats et Discussions des paramètres physico-chimiques
VII.3.Résultats des métaux lourds
VII.3.1.Résultats de Cuivre
VII.3.2.Résultats de Plomb
VII.3.3.Résultats de Chrome
VII.3.4.Résultats de Nickel
VII.3.5.Résultats de Zinc
VII.3.6.Résultats de Cadmium
VII.4.Concentration en métaux dans certain points
VII.4.1.Concentration en métaux dans le lixiviat de décharge sauvage
VII.4.2.Concentration en métaux dans le lixiviat avant traitement
VII.4.3.Concentration en métaux dans l'eau superficielle
VII.4.4. Variation des concentrations des métaux lourds entre lagune 1 et lagune 36

VII.5.Comparaison des résultats avec la littérature	52
VII.5.1.Lixiviat de la décharge sauvage	62
VII.5.2.Lixiviat du CET6	53
VII.5.3.Lixiviat traité de la lagune 3 et eaux superficielles	.63
Conclusion général6	4

Résumé

Ce travail s'inscrit dans le cadre d'étude d'impact du CET El Heria Constantine sur l'environnement, en particulier sur les eaux superficielle.

Pour cela on a déterminé les concentrations des métaux lourds (plomb, cuivre, chrome, zinc, cadmium et nickel) dans le lixiviat, aussi ses propriétés physico-chimiques.

Le processus d'analyse a été effectué par spectrométrie d'absorption atomique avec flamme.

L'analyse des lixiviats générés par cette décharge a montré qu'il s'agit d'un percolât à forte charge en métaux lourds.

Aussi, Les résultats d'analyse d'eau superficielle ont révélé que la proportion de tous les métaux étudiés avait dépassé les limites conditionnelles du rejet sauf le cadmium.

En fin L'impact de la décharge sauvage et du CET sur les eaux superficielles et par conséquent sur l'environnement est très remarquable

Mots-clés: CET, lixiviat, métaux lourds, absorption atomique.

ملخص

هذا العمل جزء من دراسة التأثير البيئي لمركز الردم التقني الهرية قسنطينة على البيئة ،وخاصة على المياه السطحية. ولهذا الغرض ، تم تحديد تركيزات المعادن الثقيلة (الرصاص ، والنحاس ، والكروم ، والزنك ، والكادميوم والنيكل) في المادة المرتشحة ، بالإضافة إلى خواصها الفيز بائية الكيميائية.

تم تنفيذ عملية التحليل بواسطة مطياف الامتصاص الذري باللهب.

أظهر تحليل الرشاحة الناتجة عن هذا التفريغ أنها عبارة عن شحنة كبيرة من المعادن الثقيلة.

أيضا ، كشفت نتائج اختبار المياه السطحية أن نسبة جميع المعادن المدروسة تجاوزت الحدود الشرطية للتصريف باستثناء الكادميوم

في الختام، إن تأثير التفريغ العشوائي على المياه السطحية وبالتالي على البيئة أمر ملاحظ للغاية.

كلمات البحث: الراشح ، المعادن الثقيلة ، الامتصاص الذري.