RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ DE CONSTANTINE 3 FACULTÉ DE GÉNIE DES PROCÉDES PHARMACEUTIQUES DÉPARTEMENT DE GÉNIE PHARMACEUTIQUE

MÉMOIRE DE FIN D'ÉTUDES

EN VUE DE L'OBTENTION DU DIPLOME DE MASTER EN GÉNIE DES PROCÉDES

OPTION: GÉNIE PHARMACEUTIQUE

THEME

TRANSPORT DE L'INSULINE AÉROSOL DANS LES POUMONS AU NIVEAU DE LA TRACHÉE

Présenté par :

- NEKKAA AMINE
- BOUROUISSA SAMIR
- GACEM MAHDI

Dirigé par : Dr DJERAFI-KAABECHE

ANNEE UNIVERSITAIRE

2013/2014

Table des matières

In	Introduction						
1	l'Insuline et l'Appareil Respiratoire						
	1.1	Génér		Ö			
	1.2	Anato	omie et Fonction	10			
		1.2.1	Région Extrathoracique				
		1.2.2	Régions Trachéobronchique et Alvéolaire				
	1.3	l'Insul	line	15			
		1.3.1	Structure de l'Insuline	17			
		1.3.2	Le Diabète	18			
		1.3.3	Insulinothérapie	18			
	1.4	Types	d'Insulines Développés par				
		l'Indu	strie Pharmaceutique	20			
		1.4.1	Origine de l'Insuline	21			
		1.4.2	Analogues de l'Insuline	21			
		1.4.3	Insuline Humaine Ordinaire ou Rapide	21			
		1.4.4	l'Insuline NPH	21			
		1.4.5	Mélanges d'Insuline	22			
		1.4.6	Développement d'une Insuline Concentrée	22			
	1.5	Autre	s Voies d'Administration de l'Insuline (Voie Buccale)	23			
		1.5.1	Géneralité	23			
		1.5.2	Voie Pulmonaire	23			
		1.5.3	Types de Médicaments	24			
		1.5.4	Projets en Développement	24			
		1.5.5	Obstacles au Transport	26			
2	Modèle d'Aérosol dans le Poumon Humain 2'						
	2.1	Modè	le Considéré	27			
		2.1.1	Mouvement de l'Air dans les Voies Respiratoires				
		2.1.2	Mouvement de l'Insuline Aérosol dans les Voies Respiratoires				
		2.1.3	l'Equation de Vlasov	31			
		2.1.4	l'Interaction Fluide/Aérosol	31			
	2.2		lisation Numérique	33			
		2.2.1	Géométrie des Voies Aériennes	33			
		2.2.2	Analyse Mathématique	34			

3	Rés	ultats	et Discussions	41		
	3.1	Simulation du Modèle				
		3.1.1	Logiciel FLUENT	41		
		3.1.2	Choix du Maillage	42		
		3.1.3	Convergence des Calculs	44		
		3.1.4	Description des Caractéristiques d'Ecoulements	46		
		ntion Numérique	54			
		3.2.1	Transport Suivant Z	54		
		3.2.2	Transport en Fonction du Temps	58		
C		61				
	.1	Annex	ce A	67		
	.2	Annex	te B	70		

Conclusion

Dans notre étude au transport du médicament insuline aérosol au niveau de la trachée. A cette fin on a traité le problème avec deux simulations la première, avec le logiciel commercial FLUENT pour simuler l'écoulement d'air et air-particule au cour d'inhalation au niveau de la trachée. Pour créer les surfaces de la géométrie en utilise le progiciel GAMBIT, ainsi que la génération du maillage tétraédrique, en volume finis.

La deuxième simulation fut l'élaboration d'un programme qui donne la résolution numérique de l'équation de Vlasov modifiée qui traite le transport des particules de l'insuline aérosol, en utilisant la méthode des différences finis avec le schéma implicite.

L'application de ce code de calcul permet la compréhension des mécanismes physiques complexes locaux de l'écoulement, pour les résultats obtenus de la simulation avec le logiciel FLUENT on montrée que les particules d'aérosol se déplacent facilement en régime laminer que le régime turbulent.

Cette simulation nous donne aussi une information importante sur le temps de déplacement des particules le long de trachée. Alors que les résultats de la simulation avec les différences finies donnent la variation de la densité des particules en fonction du temps et de la position.

De ces résultats on a constaté le temps de transport est très court, donc le déplacement de médicament est très rapide au niveau de la trachée. Ces simulations nous donne une idée générale sur la manière dans les particules se transportent le long de la trachée.