République Algérienne Démocratique et Populaire

Ministère de l'enseignement Supérieure et de la Recherche Scientifique

Université Constantine 3

Faculté de Génie des procédés pharmaceutique

Mémoire

Présenté en vue de l'obtention du diplôme Master

En Génie Pharmaceutique

Thème:

OPTIMISATION ET DIMENSIONNEMENT D'UN PROCEDE DE SEPARATION DU BIOETHANOL (COLONNE DE DISTILLATION)

Fait Par : Sous la direction de Mme

ALILI Salima L.BOUSEBA

CHOUFI Houda

Promotion 2012/2013

SOMMAIRE

Introduction générale		
I.ETUDE BIBLIOGRAPHIQUE		
I-1.Introduction	2	
I-2.Définition de la distillation.	3	
I-2-1.Distillation en continue	3	
I-2-2.Distillation discontinue.	3	
I-3. Calcule des données d'équilibre dans le cas d'un mélange idéal	4	
I-3-1. Notion d'équilibre liquide –vapeur	4	
I-3-2. Les lois de la thermodynamique	4	
I -3-2-1. Loi d'HENRY	4	
I-3-2-2. Loi de RAOULT	4	
I-3-2-3. Loi de DALTON.	5	
I-4. calcule des données d'équilibre dans le cas d'un mélange réel	6	
I-4-1. Calcul du Coefficient d'activité.	7	
I-4-2. Détermination de la pression de vapeur saturante	8	
II-PRESENTATION DE L'ETUDE		
II. Présentation de l'etude	9	
II-1.partie I. Etude des équilibres liquide-vapeur du mélange eau – éthanol	11	
II-1-1.Diagramme de phase température - composition à pression fixée		
II-1-2.Résolution de l'équilibre liquide-vapeur		
II-1-2-1. Equations d'équilibre	11	

II-1-2-2.Pressions de vapeur des composés purs	12
II-1-2-3.Coefficients d'activité	12
II-2-3.Optimisation des données expérimentales	13
II-2.partie II-dimensionnement et optimisation de la colonne, en utilisant	la méthode de
mccabe et thiele	14
II-2-1-Mise en équations du problème	15
II-2-1-1-Bilan total en nombre de moles sur la colonne	15
II-2-1-2-Bilan molaire en éthanol sur la partie haute de la colonne, sur les étag	ges au-dessus de
l'alimentation	16
II-2-1-3-Bilan molaire en éthanol sur la partie basse de la colonne, sur les éta	ages au-dessous
de l'alimentation F	17
II-2-1-4-Flux de matière	18
II-2-2-Explication la méthode de Maccabe et thiele	19
II-2-2-1-Détermination du taux de reflux minimal R _{min}	20
II-2-2-Détermination des dimensions réelles de la colonne	20
II-2-2-3- Calcul des coûts annuels	21
II-3-partie III -distillation discontinue	23
CHAPITRE III. RESULTATS ET INTERPRETAT	ΓIONS
III. Partie I	25
III. Partie II	30
III.1 calcul de nombre d'étage	31
II.2 dimensionnement de la colonne	32
III.3 calcul des couts	33
III. Partie III	35
CONCLUSION GENERALE	38
ANNEXE	
REFERENCES BIBLIOGRAPHIQUES	

RESUME

La production de biocarburant est en plein essor notamment les carburants dits de deuxième génération. Il convient cependant de s'assurer que la fabrication de ce biocarburant nécessite un minimum de dépenses énergétiques et respecte l'environnement. Nous allons nous intéresser à la conception du procédé de séparation du bioéthanol. Des programmes de calcul permettent l'optimisation d'une partie du procédé, en tenant compte des dépenses énergétiques, de des coûts d'investissement. maintenance et des contraintes environnementales. Le procédé étudié doit fabriquer 100000 tonnes de bioéthanol par an. Nous allons nous intéresser ici à l'optimisation économique de la colonne de distillation.

Le but est de dimensionner la colonne (hauteur, diamètre, nombre d'étages), après avoir tirer la fonction d'équilibre d'une étude thermodynamique, permettant de faire concentrer une solution eau+éthanol contenant 3% en mole d'éthanol pour obtenir une solution à 84% en mole d'éthanol, tout en minimisant les coûts annuels. On tiendra compte non seulement des dépenses énergétiques mais aussi des émissions de CO2 issues de ces dépenses, selon les quotas européens actuels et le coût de la tonne de CO2 émis.

Enfin, un programme de calcul en Matlab a été développé pour étudier la distillation discontinue pour ce même mélange à fin de tracer la variation des fractions molaires en fonction du temps.