REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 03 FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE ENVIRONNEMENT

Mémoire

PRESENTE POUR L'OBTENTION DU DIPLOME DE MASTER
EN GENIE DES PROCEDES
OPTION : GENIE ENVIRONNEMENT

FRACTIONNEMENT DE LA DCO DES EAUX USEES
URBAINES ET IMPACT SUR LES RESULTATS DE
SIMULATION D'UNE STATION A BOUES ACTIVEES
PAR LE MODELE ASM3

Présenté par : Dirigé par :

Zouaghi Elkhansa Kiamouche Samir

Mihoub Selma

Session: Juin

2015-2016

Sommaire

Introduction générale	1
Chapitre 1 : étude bibliographique	
I.1 présentation de traitement biologique	2
I.1.1 définition	2
I.1.2 Évolution d'une culture bactérienne	3
Phase de latence	3
Phase de croissance exponentielle.	3
Phase de croissance ralentie	4
Respiration endogène.	4
I.1.3 Modélisation de la croissance bactérienne.	5
I.1.4. Mécanisme de l'élimination biologique de l'azote	5
I.1.4.a La nitrification.	5
I.1.4.b La dénitrification.	5
I.1.5 Mécanisme de l'élimination biologique du phosphore	6
I.1.5.a zone anaérobie.	7
I.1.5.b zone aérobie	7
I.2 Fractionnement de la DCO de l'influent	7
I.2.1 Définition de la demande chimique en oxygène	7
I.2.2. Définition du fractionnement de la matière organique	7
I.2.2.a La matière organique facilement biodégradable (Ss).	7
I.2.2.b La matière organique lentement biodégradable (Xs)	7
I.2.2.c Les matières organiques inertes S_I et X_I .	8
I.2.3 Les micro-organismes X _H .	8
I.2.4 Mécanismes de dégradation de la matière organique	8
I.2.4.1 Hydrolyse	9
I.2.4.2 Croissance	9
I 2 4 3 Lyse bactérienne (concepts de décès)	9

I.3 Les modèles biologiques – les modèles ASM.	10
I.3.1 Introduction	10
I.3.2 Le modèle ASM1	10
I.3.2.1 Définition.	10
I.3.2.2 Présentation du modèle	11
I.3.2.3 Les variables du modèle	12
I.3.2.3.a Les variables carbonées.	12
I.3.2.3.b Les variables azotées.	13
I.3.2.3.c Les autres variables.	14
I.3.2.4 Les processus dynamiques	14
I.3.2.4.a Croissance aérobie de la biomasse hétérotrophique (X _{B, H})	15
I.3.2.4.b Croissance anoxique de la biomasse hétérotrophe (X _{B, H})	15
I.3.2.4.c Croissance aérobie de la biomasse autotrophe $(X_{B,A})$	16
I.3.2.4.d Mortalité des biomasses hétérotrophe.	16
I.3.2.4.e Mortalité des biomasses autotrophe.	16
I.3.2.4.f Ammonification de l'azote organique soluble	16
I.3.2.4.g Hydrolyse de la matière organique.	16
I.3.2.4.h Hydrolyse de l'azote organique	17
I.3.2.5 Les paramètre du modèle.	17
I.4 La matrice de PETERSON.	18
I.3.3 Le modèle ASM3	19
I.3.3.1 Définition.	19
I.3.3.2 Processus dynamiques.	22
I.3.3.2.a Hydrolyse.	22
I.3.3.2.b le stockage aérobie du substrat facilement biodégradable	22
I.3.3.2.c le stockage anoxique du substrat facilement biodégradable	23
I.3.3.2.d La croissance aérobie des hétérotrophes.	23
I.3.3.2.e La croissance anoxique des hétérotrophes.	23
I.3.3.2.f La respiration endogène aérobie.	23
I.3.3.2.g La respiration endogène anoxique.	23
I.3.3.2.h La respiration aérobie de produits de stockage	24

I.3.3.2.j La respiration anoxique de produits de stockage	
I.3.4 Déférence entre ASM1 et ASM3	
Chapitre 2 : Matériels et méthodes	
II.1 Présentation de la STEP SIDI MEROUANE	
II.1.1 Introduction	
II.1.2 Caractéristiques techniques	
II.1.3 Performances exigées	
II.1.3.1 qualité des eaux traitées	
II.1.3.2 Qualité des sous produits de l'épuration	
II.1.4 arrivée des effluents	
II.1.4.1 Poste de relèvement des eaux brutes	
II.1.4.2 Arrivées gravitaires (Ø 400)	
II.1.5 Description des différents ateliers de l'usine de traitement	
II.1.5.1 Dégrillage grossier	
II.1.5.2 Dégrillage fin	
II.1.5.3 Comptage des effluents	
II.1.5.4 dessablage-déshuilage	
II.1.5.5 la désodorisation biologique	
II.1.5.6 Traitement biologique du carbone, de l'azote et du phosphore	
II.1.5.6.a Zone d'anoxie amont	
II.1.5.6.b Zone anaérobie et principe de la déphosphatation biologique	
II.1.5.6.c Chenal d'oxydation	
➤ Zone anoxie dans le chenal 34	

> Zone aérée dans le chenal	35
II.1.5.7 aération.	35
II.1.5.7.a Le système d'aération.	35
II.1.5.7.b La production d'air.	36
II.1.5.7.c Dégazage	36
II.1.5.8 Clarification et recirculation des boues.	37
II.1.5.9 Comptage et production d'eau industrielle	38
II.1.6 file boues.	39
II.1.6.1 déshydratation des boues.	39
II.1.6.1.a Table d'égouttage	39
II.1.6.1.b Filtre à bonde.	40
II.1.6.1.c Conditionnement au polymère.	40
II.1.6.2 séchages des boues	41
II.1.6.2.a les lits de séchage.	41
II.1.9.b Air de stockage	42
II.1.7 Les équipements annexes	42
II.1.7.1 Ventilation.	42
II.1.7.2 Utilités (eau potable, eau industrielle, poste toutes eaux, réactifs.)	43
II.1.7.2.a Eau potable	43
II.1.7.2.b Eau industrielle	43
II.1.7.2.c Poste toutes eaux.	44
II.1.7.2.d réactifs	44
❖ Poste Fecl3	44
II.1.7.3 La Sale de contrôle	44

II.2 Lieu et point de prélèvement.	45
II.3 méthodes d'analyse et Matériels utilisés	45
Chapitre 3 : résultats et discussions	
III.1 Fractionnement de la DCO	47
III.1.1 Expérience1	47
III.1.1.1 Principe et méthode effectuée	47
III.1.1.2 Préparation du contenu des réacteurs	48
III.1.1.3 Matériel utilisé	48
III.1.1.4 Suivi du test.	49
III.1.1.5 Prélèvements et analyses.	49
III.1.1.6 Détermination finale des fractions de la DCO	49
III.1.1.7 Les calculs des fractions.	51
III.1.2 Expérience 2	51
III.1.2.1 résultats	51
III.1.2.2 Calculs	53
III.1.3 Expérience 3.	53
Détermination de k _{La}	54
III.1 Introduction	55
III.2 objectifs d'une simulation	55
III.3 Simulation de la STEP.	55
III.3.1 Débit.	56
III.3.2 Température	57
III.3.3 pH	58
III.3.4 Oxygène dissous	59
III.3.5 La DCO	60
III.3.6 La DBO ₅	61
III.3.7 NTK	62
III.3.8 NH ₄ ⁺	62
III.3.9 Nitrates et nitrites	63

III.3.10 Conductivité	64
III.3.11 MES	65
III.3.11 Les orthophosphates	65
III.3.12 Conclusion	
Conclusion générale	67
Annexe I	
Annexe II	

Résumé

Notre travail repose sur l'utilisation des protocoles de fractionnement de la DCO, afin de caractériser des eaux résiduaires urbaines dans un objectif de faire une simulation complète de la STEP.

Les résultats ont été utilisés pour modéliser la station à boues activées de SIDI MEROUANE, en appliquant le modèle ASM3 du logiciel GPS-X.

Nous avons suivi les paramètres physicochimiques de la STEP, pendant une durée de quatre mois.

La majeure partie des essais repose sur réacteurs fermés, avant et après filtration de l'effluent brut.

Mots clés

Boues activées, fractionnement de la DCO, simulation, modèle ASM3, logiciel GPS-X, STEP.

في بحثنا هذا اعتمدنا على استعمال صيغ التجربة المتعلقة بالطلب الكيميائي للأكسجين بهدف معرفة خصائص المياه المترسبة للمدن وإظهار كيفية معالجتها.

النتائج المتحصل عليها استعملت لدراسة نشاط محطة معالجة المياه لسيدي مروان بواسطة الحمأة النشطة عن طريق استخدام نموذج الحمأة النشطة رقم 3

قمنا بمتابعة الخصائص الفيزيوكيميائية لمحطة المعالجة لمدة 4 أشهر

أغلب التجارب كانت في مفاعل مغلق قبل وبعد تصفية المياه العكرة.

الكلمات المفتاحية

محطة معالجة المياه المستعملة, نموذج الحمأة النشطة 3, نمذجة, تجزئة الطلب الكيميائي للأكسجين, الحمأة النشطة