Université Mentouri Constantine

Faculté Des Sciences de l'Ingénieur

Département de Chimie Industrielle

Mémoire de Fin d'Etudes

En vue de l'obtention du diplôme de Master

Option: Génie Chimique

THEME

Effet de la vitesse d'agitation sur la taille des particules du polymère produit et sa distribution

Réalisé par

Mlle.BOUSSEBOUA Hedia

Mlle.HAMMOUDI Hadjer

Encadrées par

Dr. TALHI Abdelhafid

Promotion 2012

Table des matières

REMERCIEMENT
DEDICACE
INTRODUCTION4
CHAPITRE I
I GENERALITES SUR L'AGITATION6
I.1 Définition de l'agitation6
I.2 Opérations d'agitation6
I.2.1 Mélange des liquides 6
I.2.2 Suspension d'un solide dans un liquide
I.2.3 Mélange liquide-gaz7
I.2.4 Intensification de transfert de chaleur 8
I.3 Cuve mécaniquement agitée8
I.3.1 Différents équipements8
I.3.2 Différents types d'agitateurs
I.4 Mobiles d'agitation12
I.4.1 Mobiles à débit axial
I.4.2 Mobiles à débit radial
I.5 Régimes hydrodynamiques
I.6 Paramètres globaux d'un système d'agitation16
I.6.1 Puissance dissipée par un agitateur16

I.6.4 Gradient de vitesse ou taux de cisaillement	18
I.7 Choix du système d'agitation	19
I.8 Temps de mélange	20
I.9 Mesure des temps de mélange	21
I.10 Rayon d'action d'un agitateur	22
I.11 Forces en jeu	23
I.12 Phénomène de Vortex	26
I.13 Transfert de chaleur dans les cuves agitées	29
CHAPITRE II	
II POLYMERISATION EN SUSPENSION ET AGITATION	30
II.1 Polymérisation en suspension	30
II.1.1 Qu'est-ce qu'une suspension	30
II.1.2 Description du système	30
II.1.3 Mécanisme de la polymérisation en suspension	32
II.3 Les paramètres contrôlant la taille des particules	34
II.3.1 L'agent tensioactif	34
II.3.2 L'agitation	35
II.3.3 La viscosité de la phase dispersée	35
II.4 Mécanisme de formation des gouttelettes	36
II.4.1 Comportement d'une dispersion liquide-liquide	36
II.4.2 Mécanisme de rupture	38
II.4.3 Mécanisme de coalescence	39
II-5 Polymérisation en chaine	41
II.5.1 La polymérisation radicalaire	42

11.6 Les diverses utilisations des resines produites via les procedes de
polymérisation en suspension47
II.7 Difficultés rencontrées lors de la polymérisation en suspension49
CHAPITRE III
III. CALCULS, RESULTATS ET DISCUSSIONS51
III.1 Choix du système51
III.2 Produits utilisés53
III.3 Calcul des propriétés physiques du mélange
III.2.1 calcul de la masse volumique57
III.2.2 calcul de la viscosité58
III.4 Etude de la variation du nombre de Reynolds en fonction de la vitesse de
rotation du mobile d'agitation60
III.5 Calcul de la puissance dissipée
III.6 Comparaison entre deux types de mobiles d'agitation l'un à débit axial
l'autre à débit radial67
III.7 Etude de l'effet de la vitesse d'agitation sur la taille des particules et leur
distribution72
III.7.1 Exemple de la distribution de la taille des particules pour le cas d'une
polymérisation en suspension de styrène72
III.7.2 Relation entre le diamètre moyen des particules et le nombre de
Reynolds75
Conclusions80
Bibliographie81

Résumé

Le contrôle de la taille finale des particules lors d'une polymérisation en suspension reste une tâche difficile à effectuer, la vitesse d'agitation joue un très grand rôle en cela. En cette étude, il était question d'étudier l'effet de la vitesse d'agitation sur la taille finale des particules et sa distribution.

En premier lieu, une étude bibliographique a été faite sur l'agitation, les différents types d'agitateurs et leur utilisation, les différents équipements des cuves agitées et sur quoi est basé le choix d'un système d'agitation, aussi sur le mécanisme de la polymérisation en suspension, les paramètres contrôlant la taille des particules ainsi que les difficultés rencontrées lors du procédé de polymérisation en suspension.

En second lieu, un système a été choisi pour établir les calculs qui vont nous permettre de choisir l'agitateur le plus adéquat pour la mise en œuvre de la polymérisation en suspension car une comparaison a été établie entre deux types de mobiles (hélice marine et turbine à six pales droites). En se basant sur des résultats expérimentaux effectués auparavant, nous avons pu voir l'effet de la vitesse d'agitation sur la taille des particules et ce à partir de l'analyse granulométrique établie.

En dernier lieu, notre choix s'est porté sur l'hélice marine, mobile d'agitation qui assure les différentes conditions pour une polymérisation en suspension sauf la condition de fort cisaillement, mais nous pouvons y remédier en jouant sur la vitesse d'agitation.

La taille moyenne des particules est inversement proportionnelle à la vitesse d'agitation, ceci dit que pour plus d'uniformité des particules produites, il nous faut une vitesse d'agitation encore plus élevée et donc une consommation d'énergie plus élevée aussi.