République Algérienne Démocratique et Populaire Ministère de l'Enseignement supérieur et de la Recherche Scientifique Université Constantine 3

Faculté de Génie des Procédés Département de Génie Chimique

MEMOIRE DE FIN D'ETUDES

Pour obtenir le diplôme de Master 2

Option: Génie Chimique

ETUDE ET CARACTERISATION DU POLYURETHANE

RIGIDE: Application à l'isolation thermique

Encadré par :

M. BAKIRI Zahir

Présenté par :

- ✓ MEDKOUR Saida
- ✓ BOUCHELOUCHE Zouleikha

Année universitaire: 2015-2016

SOMMAIRE

Introduction générale	01
CHAPITRE I : Etude bibliographique	
I-1 Introduction	02
I-2 Histoire des polyuréthanes	02
1-3 Généralité sur les polyuréthannes	04
I-4 Application des polyuréthanes	06
I-4-1 Mousse rigide	07
I-4-2 Mousse flexible	08
I-4-3 Mousse thermouplastique	08
I-4-4 Les adhésives, les revetements et les elastomères	09
I-5 Structure de polyuréthane	10
I-6 La chimie du polyuréthane	12
I-7 Réactions des isocyanates	12
I-7-1 Réaction isocyanate-alcool-formation d'un uréthane (la réaction primaire)	12
I-7-2 Réaction isocyanate-eau	13
A- Allongement de chaine et agent gonflant	15
B- Les polyols	15
C- Les additifs	16
I-8 Procédé de synthèse	17
a) 1 ^{ère} étape : formation du prépolymère isocyanate	18
b) 2 ^{éme} étape : allongement de chaines	19
CHAPITRE II : Moyens expérimentaux	
II-1 Introduction	20
II-2 Procédé de préparation	
II-3 Les matières premières utilisées dans ce procédé	21
A. Les catalyseurs	22
B. Les Tensioactifs	22

C. Agent d'expansion	22
1. Cyclohexane	
2. Cyclopentane	23
D. Eau	25
II-4 Les caractéristiques du compartiment A et B	25
II-5 Données relatives à la mise en œuvre	25
II-6 Description de l'appareillage	26
II-7 Démarche expérimentale	27
II-8 Techniques d'analyses	27
1) Mesure de la densité	27
2) Spectroscopie infrarouge	28
a. Principe de la spectroscopie infrarouge	28
b. Type de spectromètre	28
b.1. Spectromètre dispersifs	28
b.2. Spectromètre à transformée de Fourier (FT-IR)	29
3) La microscopie optique à contraste de phase	30
CHAPITRE III : Résultats et discussions	
III-1 Introduction_	31
III-2 Résultats et discussions	31
III-2-1 Effet du rapport NCO/ (OH+C5, C6)	31
III-2-2 Effet de la densité du polyuréthane	34
III-3 Analyse des mousses rigides du polyuréthane par IRFT	35
III-3-1 Les résultats IR-FT pour les ECH1, ECH2, ECH3	35
III-3-2 Les résultats FT-IR des échantillons ECH4 et ECH 5	38
III-3-3 Résultats de spectres IR-FT de PU1 (C_5), PU2 (C_6)	40
1) Analyse de PU1 (C ₅)	40
2) Analyse de PU2 (<i>C</i> ₆)	41
III-4 Analyse par la Microscopie optique à contraste de phase	43

Liste des figures

Figure I-1: Répartition géographique du chiffre d'affaire des divisions polyuréthanes	04
Figure I-2: Les schémas d'un polyuréthane thermoplastique (a) et thermodurcissable (b)	05
Figure I-3: Mécanisme réactionnel de réaction 'diisocyanate-diol'	06
Figure I-4: Les principaux types des polyuréthanes et leurs applications	07
Figure I-5 : Répartitions de différents types des polyuréthanes dans le monde	10
Figure I-6: La structure générale du polyuréthane	10
Figure I-7: La mousse polyuréthane à cellule fermé(A) et la mousse à cellule ouverte(B)	11
Figure I-8 : Formation de la fonction uréthane	12
Figure I-9: Préparation des iso cyanates en industrie	13
Figure I-10: Réaction d'un isocyanate avec l'eau	13
Figure I-11: Mécanisme réactionnel isocyanate-eau selon shkapenko	14
Figure I-12: Les différents agents gonflants	15
Figure I-13: La réaction de butane diol sur hexaméthylène diisocyanate	17
Figure II-1: Schéma du procédé de fabrication de polyuréthane en laboratoire	20
Figure II-2: La composition du compartiment A et B	21
Figure II-3: Différentes représentations d'une molécule de cyclohexane	22
Figure II-4: Représentation d'une molécule de cyclopentane	24
Figure II-5: Méthode de mesure de la densité	28
Figure II-6: Appareil Infra rouge à transformé de fourrier	29
Figure III-1: Variation de différent temps de la réaction en fonction de ratio	33
Figure III-2: Variation de la densité en fonction du ratio	34
Figure III-3: Spectre Infrarouge (FT-IR) de l'ECH1(C_5, C_6)	35
Figure III-4: Spectre Infrarouge (FT-IR) de l'ECH2(C_5 , C_6)	36
Figure III-5: Spectre Infrarouge (FT-IR) de l'ECH3 (C_5 , C_6)	36
Figure III-6: Spectre Infrarouge (FT-IR) de l'ECH4(C_5 , C_6)38	
Figure III-7: Spectre Infrarouge (FT-IR) de l'ECH5 (C_5 , C_6)	39
Figure III-8: Spectre IR-FT de PU1(C_5)	40
Figure III-9: Spectre IR-TF dePU2	42
Figure III-10: Image de mousse PU à base MDI obtenue par le microscope à contraste de pha	ase_43

Liste des tableaux

Tableau I-1 : Les iso cyanates aromatiques et leurs températures de fusion et d'ébullition	14
Tableau II-1: Propriétés physicochimiques du cyclohexane	23
Tableau II-2: Propriété physicochimique du cyclopentane	24
Tableau II-3: Caractéristiques physicochimiques du polyol (A) et d'iso cyanate (B)	25
Tableau II-4 : Caractéristiques physicochimiques de compartiments A et B	26
Tableau III-1: Plan de travail pour la préparation des polyuréthanes	31
Tableau III-2 : Résultats de mixage et tests de réactivité de la réaction	32
Tableau III-3 : Les bandes caractéristiques des échantillons 1, 2,3	37
Tableau III-4 : Les bandes caractéristiques des échantillons ech4 et ech5	39
Tableau III-5 : Nombre d'onde de PU1 (C_5)	41
Tableau III-6 : Nombre d'onde de PU2 (C ₆)	42

Résumé

Les polyuréthanes sont des polymères qui contiennent le groupement uréthane, ce groupement est issu de la réaction entre un alcool et un isocyanate. Les polyuréthanes ont été utilisés dans la fabrication de composé plastique, très largement utilisés pendant la seconde guerre mondiale.

Généralement, ces polymères sont utilisés dans des domaines d'application divers, tels que : les élastomères, les systèmes d'expansés, revêtements du bois, adhésifs....etc.

Ce travail est localisé sur la préparation des différentes mousses de polyuréthane par polyaddition avec l'utilisation de deux agents gonflants (cyclopentane, cyclohexane). Ces mousses sont préparées par la réaction entre un polyol et l'isocyanate.

A partir de l'étude de la densité des mousses rigides, nous avons constaté que le cyclopentane donne une bonne isolation thermique car sa densité est faible.

D'après les spectres d'infrarouge (IR-FT) des mousses PU, on remarque que la disparition des groupements fonctionnels OH et NCO et l'apparition de groupement uréthane (–CO-NH-) qui confirme l'obtention de polyuréthane. On note aussi que l'effet de poids moléculaire de l'isocyanate est très important sur la réaction de polymérisation.

Abstract

Polyurethanes are polymers which contain the urethane group; this group is derived from the reaction between an alcool and an isocyanate. Polyurethanes have been used in the manufacture of plastic compound, very widely use during the Second World War. Since these polymers are used in various fields of application of such elastomers, expanded systems, and wood coatings, adhesive...

This work is located on the preparation of various polyurethane foams by polyaddition with the use of two blowing agents (cyclopentane, cyclohexane). These foams are prepared by the reaction between a polyol and isocyanate. From the study of the density of the rigid foams, we achieved the cyclopentane agent gives good thermal insulation because its density is low. According to the infrared spectra (FTIR) of PU foams, it is noted that the disappearance of the functional groups OH and NCO, and the appearance of urethane group (-CO-NH-) confirming polyurethane obtaining, one also notes the molecular weight effect of the isocyanate is very important to the polymerization reaction.