REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE CONSTANTINE 3

FACULTE: GENIE DES PROCEDES

DEPARTEMENT: GENIE CHIMIQUE

N° d'ordre :...

Série :...

Mémoire de Master

Filière : Génie des procèdes Spécialité : Génie chimique

APPLICATION DU MODELE DE 'SHRINKING CORE' A L'EXTRACTION PAR CO₂ SUPERCRITIQUE. APPLICATION A L'ARGAN ET AU FENUGREC

Dirigé par : Présenté par :

MENIAI, A.H KADRI Imen

Professeur CHADI Narimene

Année Universitaire 2015 /2016.

Session:(juin)

Sommaire

Introduction Générale	1
Chapitre I : Les fluides supercritiques	
1.1 Historique	1
1.2 Etat supercritique.	5
1.3 Propriétés physico-chimiques du fluide supercritique	5
1.3.1 Masse volumique	7
1.3.2 Viscosité.	7
1.3.3 Diffusivité.	}
1.3.4 Pouvoir solvant	8
1.4 Le CO ₂ supercritique	3
1.4.1 Applications du dioxyde du carbone comme fluide supercritique10	0
Chapitre II : Les techniques d'extraction des huiles essentielles	
2.1 Les huiles essentielles	2
2.1.1 Fenugrec 12	3
2.1.2 Argan	}
2.2 Les techniques d'extraction des huiles essentielles	3
2.2.1 La distillation.	4
2.2.1a L'hydrodistillation	1
2.2.1b Méthode d'hydrodiffusion 15	5

2.2.1c Entraînement à la vapeur.	15
2.2.1d Extraction assistée par micro onde	15
2.2.1e Extraction par les solvants organiques	16
2.2.2 Extraction par CO ₂ supercritique	16
Chapitre III : Modélisation	
3.1 Revue de modèles de la littérature	20
3.1.1 Le modèle de shrinking core	21
3.1.1a Description du modèle de shrinking core	22
3.1.1b Les hypothèses du modèle de shrinking core	22
3.2 Equations du bilan	23
3.2.1 Bilan de matière par rapport à l'huile essentielle dans le solvant	23
3.2.2 Bilan de matière par rapport à l'huile essentielle dans la particule solide	25
3.3 Résolution numérique.	26
3.3.1 Conditions aux limites et initiales	27
3.3.2 Variables adimensionnelles	27
3.4 Résolution par différences finies	28
3.5 Calcul du profile de concentration en fonction du rayon dans la particule solide	31
3.5.1 Calcul de concentration moyenne dans la particule solide	33
3.5.2 Détermination des propriétés physique nécessaires aux calculs	33
3.5.2a Estimation de la viscosité	33
3.5.2b Calcul de la masse volumique de CO ₂ supercritique	33

3.5.2c Calcul du coefficient de transfert de matière
3.5.2d Calcul de la concentration de saturation
Chapitre IV : Résultats et discussion
4.1 Modélisation de l'extraction supercritique par le modèle de shrinking core
4.1.1 Modélisation des profils de concentration le long de la hauteur de l'autoclave35
4.1.2 Modélisation du Rendement d'extraction
4.1.3 Détermination du coefficient de diffusion
4.2 Variation de la concentration d'huile à l'intérieur de la particule solide
Conclusion55
Références bibliographiques57
Annexe61

Résumé

Cette étude concerne l'application du modèle de 'Shrinking Core' à l'extraction supercritique d'huiles essentielles issues de plantes locales qui sont l'argan et le fenugrec. Ces deux dernières ont fait l'objet d'un travail expérimental au laboratoire de l'ingénierie des procédés de l'environnement. Cette étude a permis d'ajuster un paramètre fondamental dans le transfert de matière en l'occurrence le coefficient de diffusion, utilisant comme critère de performance le rendement d'extraction, et ce dans différentes conditions opératoires.

Les résultats obtenus sont coïncidents avec les valeurs expérimentales démontrant la fiabilité de l'approche adoptée.

Mots Clés: Extraction; Argan; Fenugrec; Rendement; Shrinking core

ملخص

نتعلق هذه الدراسة بتطبيق نموذج تضييق القلب في استخراج فوق الحرجة لزيوت اساسية مستخرجة من نباتات محلية والتي نتمثل في اركان والحلبة وكانتا هاتين الاخيرتين موضوع العمل التجريبي في مختبر هندسة عمليات البيئة.

سمحت هذه الدراسة بضبط عامل اساسي في نقل المادة واستخدم لقياس مردود الاستخلاص في ظروف خبرية مختلفة.

النتائج التي تم الحصول عليها تتزامن مع القيم التجريبية و تبين مصداقية المنهج التقريبي المعتمد.

كلمات البحث: استخراج اركان الحلبة عامل نموذج تضييق القلب

Abstract

This study concerns the application of 'Shrinking Core' model to the supercritical extraction of essential oils from local plants, namely Argan and fennel. These two plants were subject to an experimental work in the laboratory of process engineering environment.

This study allowed adjusting a fundamental parameter in the mass transfer operations and which is in this case the diffusion coefficient, using as a performance criterion the extraction yield, and this in different operating conditions.

The results obtained coincided with the experimental values showing the reliability of the approach.

Keywords: Extraction; Argan; Fennel; Yield; Shrinking core