REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTMENT DE GENIE CHIMIQUE

N° d'ordre:	
Serie:	

Filière : Génie des procédés Spécialité : Génie Chimique

Mémoire de Master

Thème

Evaluation du coefficient de dispersion hydrodynamique

Dirigé par : Présenté par :

Mme Kolli Mounira . Khennour nadjiba

.Belmahboul naima

.Boulaghemamer mohamed el amine

ANNEE UNIVERSITAIRE 2016/2017

SESSION: JUIN

Résumé

L'objectif de cette étude est alors d'évaluer le coefficient de dispersion longitudinal lors du transport d'un soluté inerte (NaCl) à traverse deux milieux poreux (sable et charbon actif). Pour évaluer ce coefficient des études expérimentales et numériques ont été faites. Le modèle mathématique développé dans cette étude a été résolu analytiquement et numériquement en utilisant deux méthodes de discrétisation et deux schémas de résolution. Le coefficient de dispersion longitudinal a été optimisé en utilisant la méthode de moindre carré. La modélisation des expériences de DTS dans ces différents cas a été effectuée grâce un code s'écrit en fortran 90 permettant le calcul de courbes de percée et d'optimiser le paramètre D_L . La modélisation des DTS sur l'ensemble du réseau de courbes obtenues va nous permettre d'obtenir un modèle d'écoulement valable pour ces conditions d'étude. Ce modèle permet de représenter très fidèlement les résultats expérimentaux.

Mots clés

Coefficient de dispersion longitudinal, transport de soluté, milieu poreux, volumes finis, différences finies, percée.

الملخص

الهدف من هذه المذكرة هو دراسة محاكاة ظواهر الانتشار لأجل تقييم او تقدير معامل الانتشار الطولي في وسط مسامي ذو بعد واحد. اذن تعريف بعض المقاييس مثل خصائص الوسط المسامي وكيفية تقدير المعامل مهم لوصف وتحليل العملية.

النمذجة العددية هي الأداة الرياضية التي من خلالها تمكنا من حل مشكلتنا باستخدامنا لطرق الفروق المحدودة والحجم المحدود بالاستعانة ببرنامج فورطرون.

النتائج التي تحصلنا عليها تبين ان طول الانبوب والتدفق وحجم الجزيئة لها تأثير فعال على عملية الانتشار وبالضبط على وقت بقاء الجزيئات داخل الوسط بينما التركيز الابتدائي فلا يؤثر عليه ابدا هدا من جهة ومن جهة أخرى ان طريقتي التقسيم للوسط (بالفروق المحدودة والحجم المحدود) وطرق الحل التحليلي المستعملة في هذه الدراسة قد اعطت نفس النتائج.

الكلمات المفتاحية

الانتشار, معامل الانتشار, الوسط المسامي, الفروق المحدودة والحجم المحدود.

Sommaire	
Liste des figures	
Liste des tableaux	
Nomenclature	
Introduction générale	01
Chapitre I :	
Notion fondamentales concernant le milieu poreux	
I.1.Introduction.	03
I.2. Définition	03
I.3. Propriétés des milieux poreux	04
I.3.1. La porosité	04
I.3.2. Surface spécifique	04
I.3.3. Perméabilité	05
I.3.4. La granulométrie	06
I.3.4.1. Le diamètre équivalent (moyen)	06
I.4. Classification des pores	07
1.5. Ecoulement en milieu poreux (la loi de Darcy)	08
1 .6.Transport en milieu poreux	08
1.6.1. Mécanismes de transport en milieu poreux	09
Chapitre II :	
Généralité sur la dispersion	
II.1. Définition de la dispersion	10
II.1.1. Dispersions naturelles	10
II.1.2. Dispersions synthétiques	10
II.1. 3. Objets biologiques	11
II.2. Echelle de la dispersion.	11
II.3. Propriétés des dispersions.	11
II.3.1. Gonflement.	12
II.3.2. Écoulement	12
II.3.3. Diffusion de la lumière	12

II.3.4. Propriétés chimique	12
II.4. Dispersion hydrodynamique	13
II.4 .1. Diffusion moléculaire	14
II.4.2. La dispersion mécanique	14
II.5. Origine et effet aux différentes échelles de la dispersion hydrodynamique	15
II. 5 .1. Echelle chromatographique	16
II. 5.1.1. Origine de la dispersion hydrodynamique	16
II. 5 .1.2. Effet de la dispersion hydrodynamique	17
II. 5.2. L'échelle du terrain.	18
II.5.3. Le coefficient de dispersion hydrodynamique	19
Chapitre III :	
Modélisation et résolution de l'équation d'advection-dispersion	
III.1. Introduction.	23
III.2. Description du problème	23
III.3. Modèle mathématique du transport de soluté	23
III.4. Les Solutions de l'équation advection-dispersion	25
III.4.1. La solution analytique de l'équation advection-dispersion	25
III.4.2. Les Solutions numériques de l'équation d'advection-dispersion	27
III.4.2.1. Approche Eulérienne	27
III.4.2.2. Approche Lagrangienne	27
III.4.2.3. Approche mixte Eulérienne-Lagrangienne	28
III.4.2.4. Méthode de différence finie	28
III.4.2.5. Méthode du volume fini	29
Schéma explicite	30
Schéma implicite	31
III.5. Résolution de l'équation de transport.	31
III.5.1. La méthode des différences finies.	32
III.5.1.1. Discrétisation du domaine.	32
III.5.1.2. Discrétisation de l'équation différentielle	32
Schéma implicite	32
schéma explicite	34
III.5.1.3. Discrétisation des conditions aux limites	34
III.5.2. Méthode des volumes finis.	35