REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE CONSTANTINE 3

FACULTE DU GENIE DES PROCEDES PHARMACEUTIQUES DEPARTEMENT DE GENIE CHIMIQUE

N° d'	ordre	:	
Série	:		

Mémoire de fin d'étude pour l'obtention du diplôme de Master

Option : Génie Chimique

Thème:

Globalisation de la méthode de *Nelder-Mead* par l'utilisation de l'algorithme GBNM

(Global Bounded Nelder-Mead) et Applications.

Présenté par : Dirigé par :

- > AOUAD Halima
- BENDJAMA Hafida
- > BENLATRECHE Meriem

Mme : N.Outili

Promotion 2014-2015

Table des matières

Liste des tableaux

Liste	des	figu	ıres
-------	-----	------	------

Introduction générale	
Chapitre I : Méthodes d'optimisation e	t globalisation de Nelder-Mead
I.1 Introduction	
I.2 Définition de l'optimisation	
I.2.1 Fonction objectif	
I.2.2 Les contraintes	
I.2.3 Les extremums	
I.3 Utilisation de l'optimisation en génie des procé	dés
I.3.1 Utilisation de l'optimisation pour la com	mande des procédés
I.3.2 Utilisation de l'optimisation dans la phas	e de conception
I.3.3 Utilisation de l'optimisation pour la mod	élisation
I.4 Les étapes utilisées pour résoudre des problème	es d'optimisation
I.5 Classement des méthodes numériques d'optimi	sation
I.5.1 Méthodes d'optimisation déterministes	
I.5.2 Méthodes stochastiques	
I.6 Méthode de simplexe	9
I.6.1 Définition mathématique du simplexe	
I.7 La méthode de Nelder-Mead	10
I.7.1 Origines et histoire de Nelder Mead	1
I.7.2 Présentation de l'algorithme initial de N	elder Mead1

	I.7.3 Description d'une itération de l'algorithme de Nelder Mead	12
	I.7.4 Algorithme de Nelder-Mead	15
	I.7.5 Limitation des déformations du simplexe modifié	16
	I.7.6 La différence entre les recherches locale et globale	17
I.8	La globalisation de la méthode de Nelder-Mead GBNM :	17
	I.8.1 Description de la globalisation	18
	I.8.2 Un modèle prédictif : la fenêtre de Parzen	18
	I.8.2.1 Estimation de la densité de probabilité par la méthode de fenêtre de	
	Parzen	18
	I.8.2.2 Le principe de la méthode	18
	I.8.2.3 Influence de la largeur de fenêtre	20
	I.8.2.4 Exemple d'application de la méthode de Fenêtre de Parzen	
écha	ntillonnage	20
	I.8.3 Prise en compte des bornes	21
	I.8.4 L'algorithme de GBNM	22
	Chapitre II : Calcul de l'équilibre thermodynamique	
II.1	Introduction	23
II.2	Notions de la thermodynamique chimique	23
	II.2.1 Système thermodynamique	23
	II.2.2 Solutions idéales	23
	II.2.3 Solutions non idéales	24
II 2	Equilibras liquida vanque	25
11.3	Equilibres liquide-vapeur	23
	II.3.1 Diagrammes thermodynamiques	25
	II .3.2 Conditions thermodynamiques de l'équilibre	27
II .4	Modèles thermodynamiques	28
	II.4.1 Généralités sur les modèles à enthalpie libre d'excès	28
	II.4.2 Les modèles semi-prédictifs	30
	II.4.3 Les modèles prédictifs de contribution de groupes	31
	II.4.4 Concept de composition locale	32

II.4.5 Extension de l'équation NRTL	33
II.4.5 .1 Application de modèle à l'équilibre des mélanges binaires	37
II.4.5.2 Estimation des paramètres d'interaction	37
II.5 Caractéristiques du modèle NRTL:	39
II.6 Importance du calcul de l'équilibre thermodynamique	40
Chapitre III : Synthèse bibliographique	
III.1 Introduction	41
III.2 Les liquides ioniques	41
III.2.1 Nomenclature des liquides ioniques	43
III.2.2 Propriétés physico-chimiques des liquides ioniques	43
III.2.3 Domaines d'applications des liquides ioniques	44
III.3 Travaux précédents sur la globalisation de Nelder Mead	45
III.4Travaux précédents sur l'application des liquides ioniques en équilibre thermodynan	nique
	47
III.5 Travaux précédents sur l'estimation probabilisé par la fenêtre de Parzen	48
Chapitre IV : Résultats et discussion	
IV.1 Introduction	52
IV.2 Application de Nelder-Mead classique	52
IV.2.1 Fonction analytique	52
IV.2.2. Paramètres d'interaction du modèle NRTL	57
IV.3 Inconvénients de la méthode de Nelder-Mead globalisée par réinitialisation aléatoir	e59
IV.4 Procédure de globalisation	60
IV.4.1 Taille du simplexe initial	60
IV.4.2 Projection des points externes sur les bornes	61
IV.4.3 Ré-initialisation probabilisée	62

Table des matières

IV.4.4 Application du programme GBNM	63
IV.5 Application de GBNM pour le calcul de l'équilibre chimique	67
IV.6 Conclusion	72
Conclusion générale	
Références bibliographiques	
Annexe 1	
Annexe 2	

Résumé

Ce travail présente la méthode de Nelder Mead globalisée et bornée qui a été élaborée à travers des améliorations de l'algorithme de la méthode de Nelder Mead classique par la ré-initialisation aléatoire puis probabilisée, toutes les étapes de la procédure ont été présentées. Le programme de GBNM a été validé par des fonctions multimodales. Le programme final de l'algorithme GBNM a été utilisé pour ajuster les paramètres d'interaction du modèle thermodynamique NRTL des systèmes binaires. On a introduit les optimums globaux trouvés pour chaque système pour le calcul de l'équilibre liquide vapeur où on a trouvé une bonne concordance avec les données expérimentales tirées de la littérature.

Mots clés : globalisation, Nelder Mead, ré-initialisation probabilisée, Parzen, optimum global, paramètres d'interaction, NRTL, équilibre chimique.

ملخص

هذا العمل يقدم طريقة Nelder Mead الشاملة و المحدودة المحصل عليه بادخال تحسينات في طريقة Nelder Mead الكلاسيكية عن طريق اعادة الانطلاق بالاحتمالات. تم التحقق من صحة هذا البرنامج GBNM بواسطة دوال متعددة القيم الحدية .طريقة GBNM استخدمت لضبط المعلمات من النموذج الحراري NRTL للأنظمة الثنائية .القيم الحدية المحصل عليها استعملت لرسم منحنيات التوازن سائل بخار. النتائج اظهرت توافق مع البيانات الموجودة سابقا

كلمات المفتاحية: الشمولية، Nelde Mead ، إعادة الاحتمالات، قيم حدية عظمي, المعلمة التفاعل Parzen ,

Abstract

This work present the method of globalized bounded Nelder Mead which was developed through improvements in the method of classic Nelder Mead algorithm, by probability resetting. The program of GBNM was validated by multimodal mathematic functions. The method of GBNM was used to adjust the interaction parameters of NRTL thermodynamic model for binary systems. The global optima found for each system was introduced to the vapor liquid equilibrium calculation, for which it has been found corresponding results to the given experimental data from the literature.

key words: globalization, Nelder Mead, resetting probability, Parzen, global optimum interaction parameter, NRTL, chemical equilibrium.