REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 3

FACULTEFACULTE DES SCIENCES DE LA TERRE, DE LA GEOGRAPHIE ET DE L'AMENAGEMENT DU TERRITOIRE

DEPARTEMENT D'ARCHITECTURE ET D'URBANISME

N° d'ordre : Série :			
Mémoire de Master			
Filière: Architecture	Spécialité: Architecture climatique		
	et environnement		
EFFET DES BRISE-VENTS	DANS UN CLIMAT SEMI-HUMIDE		
Cas de l	a ville de Guelma		
Dirigé par:	Présenté par :		
BENHARKAT Sara	LAMOURI Imane		
Grade			

Année Universitaire 2015/2016. Session: juin

Table des matières

Table des matières	I
Liste des illustrations	IV
Introduction générale	
Introduction	1
Problématique	2
Hypothèses de l'étude	3
Objectifs de l'étude	3
Cas d'étude	4
Méthodologie et outils de recherche	4
CHAPITRE I : Le vent comme phénomène naturel	
Introduction	6
I.1.Direction et origine du vent	6
I.1.1.La force de gradient de pression	7
I.1.2.La force de CORIOLIS	7
I.1.3 Les forces de frottements	7
I.1.4. échelle de Beaufort	8
I.2.Le vent à l'échelle atmosphérique	9
I.2.1. L'action du vent	9
I.2.2 Circulation générale dans l'atmosphère	10
I.2.3. Les grands systèmes du vent	11
I.2.4. Types des vents	12
I.2.4.1. A 1'échelle planétaire	12
I.2.3.2 A l'échelle synoptique (1000 à 6000 Km)	13
I.2.3.3. A l'échelle moyenne (10 à 100 Km)	13
I.2.3.4.Les Vents saisonniers	16
I.2.4. Structure turbulente du vent	17
I.2.4.1. La turbulence d'obstacle	17
I.2.4.2. La turbulence de cisaillement	18
I.3. Le vent : un facteur climatique	18

I.3.1. Définition	18
I.3.2. Caractéristiques du vent	19
I.3.3.Typologie d'écoulement	20
I.3.4. les indicateurs du vent	21
I.3.5.La mesure du vent	23
I.5. Effets sur le vent	24
I.5.1. Effets du relief	24
I.5.2. Effets des obstacles sur l'écoulement du vent	28
Conclusion	29
CHAPITRE II : Les brise-vents	
Introduction	33
II.1 Définition du brise-vent	33
II.2. Objectifs de l'utilisation des brise-vents	34
II.3. Typologie des brise-vents	35
II.3.1. Les brise-vent inertes	35
II.3.2. La haie brise-vent	38
II.3.2.1 Définition	38
II.3.2.2. Types des haies brise-vents	38
II.3.2.3. Caractéristiques physiques des haies brise-vents	42
II.4. Efficacité du brise-vent	49
II.5. Mise en œuvre des brise-vents	49
II.6. L'entretien des haies brise-vent	51
II.7. Le suivi	52
Conclusion	52
CHAPITRE III : Analyse climatique bioclimatique et urbaine de la	ville de Guelma
Introduction	54
III.1.Présentation de la ville de Guelma	54
III.2. Analyse climatique de la ville de Guelma	55
III.2.1. Analyse des éléments de climat	55
III.2.1.1.La température	55
III.2.1.2.L'humidité relative	55
III.2.1.3.Le vent	56

Table des matières

III.2.1.4. Insolation (ensoleillement)	7
III.2.1.5. Précipitation5	58
III.3. Analyse bioclimatique de la ville de Guelma	60
III.3.1.Les tables de Mahoney	60
III.3.2. Le diagramme de Szokolay.	53
III.4.Analyse urbaine	.65
III.4.1.Présentation de Hammam Debagh	65
III.4.2. Présentation du site	68
Conclusion.	.72
CHAPITRE IV : Présentation du projet et simulations numériques	
IV.1. Présentation du projet	.73
IV.1.1. Schéma de principe du projet	.74
IV.1.2. Le plan de masse	.75
V.1.2.1. La composition du projet	.76
IV.1.2.2. Les stratégies durables appliquées dans l projet	84
IV.2. Simulation numérique	.86
IV.2. 1.Logiciel Sketchup	.86
IV.2.1.1. Présentation du logiciel	.86
IV.2.1.2. Interprétation de l'ensoleillement	89
IV.2.2. Logiciel Envi met	.95
IV.2.2.1 Présentation du logiciel	95
IV.2.2.2.Interprétation des resultats	.95
Conclusion.	.111

Table des matières

Résumé:

Depuis la préhistoire, le vent, le soleil, et l'eau ont été les éléments absolus de la vie, que l'homme a utilisé pour répondre aux différentes exigences qui s'imposent dans l'environnement, ainsi pour obtenir la sensation de bien-être. Nos jours, et pour des visés identiques, l'homme est toujours en contact avec sont environnement, où il doit cohabiter avec ses paramètre (course du soleil, vitesse du vent, l'humidité ...), pour la finalité d'atteindre le but qui est la création d'espaces extérieurs confortables et agréables à vivre.

L'intérêt au bien-être de l'homme est un sujet soulevé et approché par de multiples disciplines. Le confort dans les espaces publics est vécu comme une sensation globale de bienêtre ou d'inconfort, Le confort extérieur est aussi bien influencé par des éléments physiologiques, Citant la température, l'humidité, et le vent.

Le vent est l'un des paramètres déterminant le succès ou l'échec d'un espace public.

Comme il représente un élément indispensable du microclimat urbain, il a une influence massive sur le confort thermique, où la conception d'un projet urbain doit intégrer la question du confort humain à travers une évaluation quantitative de l'équilibre thermique des piétons, de l'effet mécanique du vent.

Lorsqu'un projet présente des risques d'inconfort au niveau piéton à cause du vent, il faut l'évaluer en fonction des différents mécanismes critiques d'écoulement du vent, on intégrants des brise-vents végétaux (ils s'agitent dans une ceinture des arbres) ou inertes (des obstacles meneaux).

L'intérêt de notre recherche est de mettre en évidence l'effet des brise-vents sur l'écoulement du vent dans une région à un climat subhumide (la wilaya de Guelma-Hammam Debagh).

L'interprétation des données climatique, bioclimatique et urbaine indique que le site est relativement exposé au vent, cela guide vers l'intégration obligatoire des brisevent.

Le logiciel Envi-met 4 nous a permet d'accomplir et de matérialiser des simulations numériques pour comparer et vérifier les résultats analytiques précédentes.

Apres l'interprétation des résultats numérique, on déduit que l'intégration des brisevents est primordiale, pour réduire les effets nocifs du vent.

Mots clés : microclimat urbain, espace extérieur, confort thermique, vent, brise-vent, Envi-met.