REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE CONSTANTINE 3 - SALAH BOUBNIDER

FACULTE DE GENIE DES PROCEDES DEPARTEMENT GENIE CHIMIQUE

N° d'ordre :	•••	•••
Série :	•••	

Mémoire de Master

Filière : Génie des Procèdes Spécialité : Génie Chimique

Mise en évidence de l'activité anti-oxydante, antibactérienne, antidiabétique et test de toxicité des extraits des déchets agroalimentaires

Dirigé par : Présenté par :

Dr. ZEHIOUA Raouf RAMOUL Manel

BOUCHELAGHEM Bahdja

FILLALI Yousra

Année Universitaire 2022/2023

Table des matières

Remerciements	I
Dédicaces	П
Liste des abréviations	V
Liste des figures	VII
Liste des tableaux	X
Introduction générale	01
Chapitre I :	
Méthodes d'extraction des substances bioactives à partir des	déchets agroalimentaires
I.1.Introduction	04
I.2. Définitions d'un déchet	04
I.3. Déchet agroalimentaire	04
I.3.1. Types des déchets	05
I.3.2. Classification des déchets agroalimentaires	05
I.3.3. Traitement des déchets agroalimentaires	05
I.3.3.a. Stockage des déchets agroalimentaires	05
I.3.3.b. Valorisation des déchets agroalimentaires	05
I.3.3.c. Elimination des déchets agroalimentaires	07
I.3.4. Utilisations des déchets agroalimentaires	07
I.4. Métabolites secondaires des végétaux	08
I.4.1. Les composés phénoliques	08
I.5. Méthodes d'extraction des substances bioactives à partir des d	léchets
Agroalimentaires	10
I.5.1. Méthodes d'extraction conventionnelle	10
I.5.1a. Macération	10
I.5.1b. L'hydrodistillation	11

I.5.1c. Extraction par soxhlet	11
I.5.2. Méthodes d'extraction innovante	12
I.5.2a. Extraction par des solvants supercritiques	12
I.5.2b. Extraction assistée par ultrasons (USAE)	13
I.5.2c. Extraction assistée par microondes (MWAE)	14
I.6. Conclusion	14
Chapitre II :	
Présentation théorique des activités biologiques considérées	
II.1. Introduction	16
II.2. Activités biologiques	16
II.2.1. Activité antioxydante	16
II.2.1a. Radicaux libres et stress oxydant	16
II.2.1b. Avantages et inconvénients des antioxydants naturels et synthétiques	17
II.2.1c. Tests de piégeage des radicaux libres	18
II.2.1d. Intérêt de l'évaluation de l'activité antioxydante	19
II.2.2. Activité antidiabétique	20
II.2.2a L'α-amylase	20
II.2.3. Activité bactérienne	20
II.2.3a. Bactérie (Définitions et pathogènicité)	20
II.2.3b. Mécanisme de l'effet antibactérien	21
II.2.3c. Antibiotiques et mécanismes d'action	21
II.2.4. Test de toxicité	23
II.2.4a.Ver de farine Tenebrio molitor	23
II.2.4b. Systématique	23

II.2.4c. Classification	23
II.2.4d. Morphologie	23
II.3. Conclusion	24
Chapitre III : Matériel et méthode	
III.1. Introduction	26
III.2. Matériels et produits chimiques	26
III.2.1. Matériel végétale (Présentation des sous-produits utilisée)	26
III.2.2. Produits chimiques, enzymatiques et biologiques utilisés	27
III.2.3.Matériels utilisés	27
III.3. Méthodes	29
III.3.1.Préparation des échantillons	29
III.3.1a. Séchage	29
III.3.1b. Broyage et tamisage	30
III.3.2. Caractérisation physico-chimiques des déchets utilisée	30
III.3.2a. Taux d'humidité	30
III.3.2b. Détermination de la matière minérale (MM)	31
III.3.2c. Détermination du pH et de la conductivité	32
III.3.3. Méthodes d'extractions adoptées	32
III.3.3a. Extraction par Macération	32
III.3.3b. Hydrodistillation	35
III.4. Évaluation des activités biologiques considérées	35
III.4.1. Évaluation de l'activité antioxydante	35
III.4.1a. Le piégeage du radical libre DPPH	36
III.4.1b.L'activité de la réduction du radical-cation ABTS	36
III.4.1c. Pouvoir réducteur FRAP	36

III.4.1d. L'activité phénanthroline	37
III.4.1e. Activité antioxydante par équivalence en Trolox	37
III.4.2. Évaluation de l'activité antidiabétique	38
III.4.2a. α amylase	38
III.4.2b. Activité inhibitrice α amylase	39
III.4.3. Évaluation de l'activité antibactérienne	40
III.4.3a. Spectre antibactérien	40
III.4.3b. La préparation de milieu de culture	42
III.4.3c. Préparation des inocul a bactériens	42
III.4.3d. Mise en évidence de l'activité antibactérienne	42
III.4.4. Le test de toxicité	43
III.4.4a. Test de toxicité sur les vers de farine Tenebrio Molitor	43
III.5. Conclusion	44
Chapitre IV : Résultats et discussions	
IV.1. Introduction	46
IV.2. Étude de caractérisation des sous-produits considérés	46
IV.3. Préparation des extraits	47
IV.3.1. Le rendement d'extraction	48
IV.3.1a. Extraction par macération	48
IV.3.1b. Extraction par hydro-distillation	52
IV.4. Evaluation des activités biologiques considérées	54
IV.4.1. Activité antioxydante	54
IV.4.1a. Test du piégeage du radical DPPH	54
IV.4.1b. Activité du piégeage du cation radical ABTS*+	57
IV.4.1c. Activité du pouvoir antioxydant réducteur ferrique (FRAP)	60
IV.4.1d. Activité de réduction par la formation du complexe Fe ⁺² - Phenanthroline	64

Conclusion générale		
IV.5. Conclusion	74	
IV.4.4. Le test de toxicité	72	
IV.4.3b. Extraits des écorces d'oranges (EOB)	70	
IV.4.3a. Extraits des épluchures de pomme de terre (EPTB)	69	
IV.4.3. Activité antibactérienne	69	
IV.4.2a. Pouvoir inhibiteur de l'α-amylase	66	
IV.4.2. Activité antidiabétique	66	

Références bibliographiques

Résumé

ملخص

Abstract

Résumé

Dans le cadre de valorisation des déchets agroalimentaire, La présente étude concerne la mise en évidence de quelque activité biologique des déchets agroalimentaire notamment, l'écorce d'orange et l'épluchure de pomme de terre. Pour cela, l'extraction des substances bioactifs à partir de des déchets choisis a été réalisée par deux méthodes d'extractions conventionnelles : La macération, ou l'étude expérimentale à été réalisé via le plan d'expérience Box-Behnken avec trois diamètres. L'hydro-distillation avec trois diamètres différents. Ensuite, l'évaluation de l'activité anti-oxydante des extraits obtenus a été réalisée par la méthode de DPPH, ABTS, le pouvoir réducteur FRAP et la phenanthroline. L'activité antibactérienne a été réalisée in vitro par la méthode des disques sur milieu de culture Muller Hinton sur deux souches *Escherichia coli* et *Staphylococcus aureus*, et la zone d'inhibition est mesurée en mm de diamètre. Finalement un test de toxicité a été entrepris.

L'étude a montrée, que les déchets considérés engendrent des constituants potentiellement bioactifs. Cependant, ils peuvent engendrés des molécules toxiques.

Mots clés : déchets agroalimentaires, extraction, macération, hydro-distillation, activité antibactérienne, activité antioxydante, test de toxicité.

ملخص

كجزء من استعادة نفايات الأغذية الزراعية، تتعلق هذه الدراسة بتحديد بعض النشاط البيولوجي لمخلفات الأغذية الزراعية، ولا سيما قشر البرتقال وتقشير البطاطس. لهذا الغرض، تم استخراج المواد النشطة بيولوجيًا من النفايات المختارة من خلال طريقتين تقليديتين للاستخراج: النقع، حيث أجريت الدراسة التجريبية عبر خطة Box-Behnken التجريبية بثلاثة أقطار. التقطير المائي بثلاثة أقطار مختلفة. بعد ذلك، تم إجراء تقييم النشاط المضاد للأكسدة للمستخلصات التي تم الحصول عليها بواسطة طريقة HRDA، القوة المختزلة PRAP والفينانثر ولين. تم إجراء النشاط المضاد للبكتيريا في المختبر بواسطة طريقة القرص على وسط استزراع مولر هينتون على سلالتين من Escherichia coli و Staphylococcus و aureus، وتم قياس منطقة التثبيط بالملليمتر في القطر. أخيرًا تم إجراء اختبار السمية.

أظهرت الدراسة أن النفايات المدروسة تولد مكونات نشطة بيولوجيًا محتملة. ومع ذلك، يمكنهم توليد جزيئات سامة

الكلمات المفتاحية: مخلفات الأغذية الزراعية، الاستخلاص، النقع، التقطير المائي، النشاط المضاد للبكتيريا، النشاط المضاد للبكتيريا، النشاط المضاد للأكسدة، اختبار السمية.

Abstract

As part of the recovery of agri-food waste, this study concerns the identification of some biological activity of agri-food waste, in particular orange peel and potato peeling. For this, the extraction of bioactive substances from selected waste was carried out by two conventional extraction methods: Maceration, or the experimental study was carried out via the Box-Behnken experimental plan with three diameters. Hydro-distillation with three different diameters. Then, the evaluation of the antioxidant activity of the extracts obtained was carried out by the method of DPPH, ABTS, the reducing power FRAP and phenanthroline. The antibacterial activity was carried out in vitro by the disc method on Muller Hinton culture medium on two strains of Escherichia coli and Staphylococcus aureus, and the zone of inhibition is measured in mm in diameter. Finally, a toxicity test was undertaken.

The study showed that the waste considered generates potentially bioactive constituents. However, they can generate toxic molecules

Key words: agro-food waste, extraction, maceration, hydro-distillation, antibacterial activity, antioxidant activity, toxicity test.