REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 3

FACULTE D'ARCHIYECTURE ET D'URBANISME DEPARTEMENT D'ARCHITECTURE

Mémoire de Master

Filière: architecture

Spécialité: Efficacité énergétique pour l'architecture bioclimatique

THEME: L'éclairage naturel dans un équipement culturel

(Cas d'étude : médiathèque a l'UVC3)

Sous direction: Présenté par : laib Taqwa

Mm Bouchham

Année Universitaire 2015/2016

Session: (juin 2016)

Introduction générale 1
- Problématique1-2
- Hypothèses2
- Méthodologie de recherche2
Partie 1 : partie théorique
I. Chapitre01 : l'énergie solaire et le photovoltaïque
Introduction
introduction
I.1.Approche sur l'énergie solaire
I.1.1 .Définition de l'énergie solaire
I.1.2 .La constante solaire
I.1.3.influence énergétique de l'ensoleillement
I.2.La conversion de l'énergie lumineuse en énergie électrique
I.2.1. La définition du mot photovoltaïque6
I.2.2. Historique6_7
I.2.3. C'est quoi un capteur solaire photovoltaïque ?
I.2.4. La composition d'un panneau photovoltaïque
I.2.5. La cellule photovoltaïque (PV)8
I.2. 5.1.Pourquoi le choix de silicium9
I.2. 5.2. Formation de la jonction PN
I.2.5.3.Principe de fonctionnement la cellule photovoltaïque
I.2.5.4.Les types et le rendement de la cellule photovoltaïque
Conclusion12
II .Chapitre 2 : l'énergie photovoltaïque comme solution optimale pour l'éclairage extérieur
Introduction
II. 1. La composition d'une installation photovoltaïque
II.2. La position optimale de panneaux photovoltaïque14
II.3. Les types de poses de panneaux photovoltaïques15

II. 4. Notions d'application des panneaux solaires photovoltaïques
II.4.1. Sur le toit
II. 4.2. Sur la façade
II. 4.3. Pour les lampadaires solaires
II .4.3.1. Les composants de lampadaire solaire
II .4.3.2. Principes techniques
II .4.3.3. Evolution
II .4.3.4. Enjeux
II .4.3.5. Perspective
II .4.3.6. Avantage
II .4.3.7. Différents types de lampe solaire
II .4.3.8.Le domaine dusage
II. 4.4. Pour les mobiliers urbains
II.5. type d'installation
II.6. les types de système de poursuite solaires
II .6.1. Système De Poursuite Solaire Mono-Axial
II 6.2. Système De Poursuite Solaire Bi-Axial
II.7. Entretien
II.8. Méthode de calcul d'une installation photovoltaïque
II.9. Le champ d'application de panneaux solaires27
II.10. Les recommandations
II.11. Les intérêts et les limites

Conclusion29	
Partie2: partie pratique30	
III .Chapitre 3 : présentation du terrain d'intervention	
Introduction	
III.1Présentation de la ville de Constantine30	
III.1.1. Situation Géographique	
III.1.2.les limites	
III.2.analyse climatique de la ville de Constantine	
Introduction	
III.2.1.Définition du climat	
III.2.2.Les éléments du climat	
Conclusion33	
III.3.Analyse Bioclimatique de la ville De Constantine	
Introduction	
III.3.1.Tableau de mahonne (annexe)	
III.3. 2.Evaluation du confort thermique par la méthode de Steeve Szocolay et Givoni .36	
III.3. 2.1.Méthode Givoni	
III.3. 2.2. LA Méthode de Szocolay	
Conclusion	
III.4.L'analyse urbaine	
IV .chapitre 4 : résultats et interprétation des logiciels	
IV .1.résentation du projet47	

IV .1.1.réaménagement de l'axe central	47_51
IV .1.2.présentation de la médiathèque université	51_54
IV .2.Simulation et interprétation des logiciels	55
IV .2.1.Envi met	55
IV .2.2.Ecotect Analyse 2011	60
Conclusion générale.	63
Bibliographie	
Les annexes	
Résumé	

Le résumé

Deux des défis majeurs pour notre siècle sont la lutte contre le changement climatique et la diversification des sources d'énergies que nous utilisons actuellement. Dans cette optique, les énergies photovoltaïques ont indiscutablement un rôle important à tenir puisque les systèmes de production d'électricité solaire photovoltaïque sont fiables, sans danger et d'une mise en œuvre très aisée et énergétiquement efficaces.

Dans ce contexte et dans l'objectif de limiter les besoins énergétiques en électricité, on a eu recours à l'énergie solaire photovoltaïque pour optimiser l'éclairage extérieur à l'Université 3 à Constantine en intégrant des panneaux solaires photovoltaïques tout le long de l'axe principal. On a donc déterminé le type, l'orientation, l'inclinaison ainsi que le rendement de ces panneaux et ceci à l'aide du logiciel de simulation Ecotect. Les résultats ont montré que la quantité d'énergie générée par les panneaux solaires couvre largement la demande annuelle des différentes zones en matière d'éclairage.

Mots clés: conception, énergie, simulation, panneau photovoltaïque.

<u>الموجز .</u>

تحديين رئيسيين لهذا القرن هي مكافحة تغير المناخ وتنويع مصادر الطاقة التي نستخدمها اليوم، في وجهة النظر هذه،الطاقة الشمسية الضوئية لديها بلا شك دور هام لان أنظمة الطاقة الكهربائية الشمسية الضوئية وموثوق بها و آمنة وسهلة التنفيذ للغاية و ذات كفاءة طاقوية

وفي هذا السياق، من أجل الحد من متطلبات الطاقة لتوليد الكهرباء والتي تستخدم على وجه التحديدي الإضاءة الخارجية قمنا بالرجوع الى الطاقة الضوئية الشمسية لاقتصاد وتحسين نوعية الاضاءة الخارجية في جامعة قسنطينة 3 حيث قمنا يدمج الالواح الطاقة الشمسية على طول محور وبالطبع كان ذلك بعد دراسة معيارها المتعلقة بصنفها واتجاهها و ميلها ولتحيد مردودها لجانا الى برنامج محاكات من خلال اكوتاكت. ووفقا للنتائج، يمكننا أن نرى أن كمية الطاقة التي تولدها الألواح الشمسية تغطي الطلب السنوي مناطق مختلفة على نطاق واسع من نقطة الدراسة (المحور المركزي)، لأنها الطاقة الفعالة التي توجد توازن جيد بين التدابير لتوفير الطاقة وتلك التي تستخدم للإنتاج

. كلمات البحث : ، و الطاقة ، و المحاكاة ، و الخلايا الكهر و ضوئية