الجمهورية الجزائرية الديمقراطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي والبحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

جامعة صالح بوبنيدر قسنطينة 3

كلية الطب -قسم الصيدلة

FACULTE DE MEDECINE - DEPARTEMENT DE PHARMACIE

Mémoire de fin d'études en vue de l'obtention du diplôme de

DOCTEUR EN PHARMACIE

Développement de modèles QSPR/QSAR pour la prédiction de propriétés physicochimiques et biologiques des substances organiques

Encadré par :

Pr. LALAOUNA Abd El Djalil

Présenté par :

- Baghi Mohammed El Hadi

- Kaidouchi Safwan

- Mansouri Houssem Eddine

ANNEE UNIVERSITAIRE: 2022 - 2023

Sommaire

Remerciements	
Dédicaces	
Sommaire	
Liste des figures	I
Liste des tableaux	VII
Liste des annexes	XIII
Liste des abréviations et acronymes	XIV
Liste des définitions	XVII
Introduction générale	1
Contexte de l'étude	3
Partie 1 . Etude bibliographique	
Chapitre I .Médicaments : définition, développement et classification	
1.Introduction	8
2. Définitions	8
3. Différentes phases de recherche et développement d'un médicament	10
3.1. Recherche d'un médicament	10
3.2. Essais précliniques	11
3.2.A. Objectif des essais précliniques	11
3.2.B. Etapes des essais précliniques	11
3.2.C. Réglementations des essais précliniques	12
3.3. Essais cliniques	12
3.3.A. Etapes des essais cliniques	13
3.3.B. Réglementations des essais cliniques	14
3.4. Autorisation de la mise en marche	14
3.4.A. Etapes d'AMM	14
3.5. Pharmacovigilance	15
3.5.A. Importance de la pharmacovigilance	15

3.5.B. Imputabilité intrinsèque	16
3.5.C. Imputabilité extrinsèque	16
4. Principales classes médicamenteuses	21
4.1. Médicaments analgésiques	21
4.2. Médicaments anti-infectieux	21
4.3. Médicaments du système cardiovasculaire	22
4.4. Médicaments neurologiques et neuropsychiatriques	23
4.5. Médicaments pour les troubles sanguins	23
4.6. Médicaments pour les troubles broncho-pulmonaires	24
4.7. Médicaments anti-inflammatoires	24
4.8. Médicaments pour les troubles gastro-intestinaux	25
4.9. Médicaments pour les troubles endocriniens	25
4.10. Médicaments pour les troubles métaboliques	26
4.11. Médicaments ophtalmiques	27
4.12. Médicaments ORL (Oto-Rhino-Laryngologie)	28
4.13. Médicaments pour les troubles génito-urinaires	28
4.14. Médicaments pour les troubles génico-obstétriques	29
Chapitre II . Propriétés physico-chimiques, biologiques et caractéristiques structurelles des molécules organiques	
1. Introduction	31
2. Propriétés physico-chimiques des molécules organiques	31
2.1. Descripteurs 2D	32
2.1.A. Notion et terminologie	32
2.1.B. Propriétés physiques	33
2.1.C. Description de la théorie Huckel	35
2.1.D. Surfaces subdivisées	37
2.1.E. Nombre d'atomes et nombre de liaisons	39
2.1.F. Indices de connectivité et de forme Kier & Hall	41
2.1 G. Descripteurs des matrices d'adiacence et de distance	43

2.1.H. Descripteurs des caractéristiques pharmacophore	4
2.1.J. Descripteurs de charges partielles	4
2.2. Descripteurs 3D	5
2.2.A. Descripteurs d'énergie partielle	5
2.2.B. Descripteurs de la MOPAC	5
2.2.C. Descripteurs de forme/surface/volume	5
2.2.D. Descripteurs de charges dépanadant de la conformation	5
3. Propriétés biologiques des molécules organiques	5
3.1. Absorption	6
3.1.A. Perméabilité Caco-2	6
3.1.B. Absorption intestinale (humaine)	6
3.1.C. Solubilité dans l'eau	6
3.1.D. Substrats de glycoprotéine P	6
3.1.E. Inhibiteurs de la P-glycoprotéine I et II	6
3.1.F. Perméabilité cutanée	6
3.2. Distribution	6
3.2.A. Volume de distribution (humain)	6
3.2.B. Perméabilité de barrière hémato-encéphalique	6
3.2.C. Fraction non liée	6
3.2 D Perméabilité du système nerveux central	6
3.3. Métabolisme	6
3.3.A. Inhibiteurs de cytochrome P450	6
3.3.B. Substrats de CYP 2D/CYP3A4	6
3.4. Excrétion	6
3.4.A. Clearance totale	6
3.4.B. Substrats rénaux pour OCT2 (Organic Cation Transporter 2)	6
3.5. Toxicité	6
3.5.A. Dose maximale tolérée	6

3.5.B. DL50 chez le rat	68
3.5.C. Test d'Ames	68
3.5.D. Toxicité chez T. pyriformis	68
3.5.E. Toxicité du vairon	69
3.5.F. Toxicité hépatique	69
3.5.G. Toxicité orale chronique chez le rat	69
3.5.H. Sensibilisation cutanée	69
3.5.I. Inhibiteurs HERG I et inhibiteurs HERG II	70
CHAPITRE III. Modèles QSPR/QSAR	
1. Introduction	72
2. Historique	72
3. Développement des modèles QSPR/QSAR	74
4. Etapes de développement des modèles QSPR/QSAR	75
4.1 Collecte et prétraitement des données	75
4.2 Partitionnement de l'ensemble de données	78
4.3. Sélection des descripteurs	79
4.3.A. Méthode ascendante	79
4.3.B. Méthode descendante	80
4.3.C. Méthode pas à pas	80
4.3.D. Algorithme génétique	80
5. Méthodes chimiométriques	81
5.1. Régression linaire multiple	82
5.2. Réseaux de neurones artificiels	83
6. Evaluation et validation des modèles chimiométriques	85
6.1. Validation des modèles chimiométriques	85
6.4.A. Validation interne	85
6.4.B. Validation externe	86
6.2 Evaluation des performances des modèles chimiométriques	87

Ro	2.A. Racine de l'Erreur Quadratique Moyenne (REQM) (ou RMSE pour oot Mean Square Error)	87
	2.B. Coefficient de détermination (r²) et coefficient de détermination usté (r² ajusté)	87
Pa	artie 2 . Partie pratique	
1.	Logiciels utilisés	91
2.	Collecte des données	92
3.	Présentation des individus	92
4.	Prétraitement des données	93
	4.1.Méthode	93
	4.2.Résultats	94
	4.3.Discussion et conclusion	97
5.	Selection des proprietés physiochimique et biologique à étudier	97
6.	Sélection des individus	98
	6.1.Méthode	98
	6.2.Résultats	98
	6.3.Discussion et conclusion	100
7.	Modélisation prédictive des données par régression linéaire multiple : une analyse préliminaire	101
	7.1.Méthode	101
	7.2.Résultats	101
	7.3.Discussion et conclusion	103
8.	Conception et optimisation des modèles prédictifs par régression linéaire multiple	
8.	1. Modèle MLR pour le calcul de "LogP"	105
8.	1.1. Méthode	105
8.	1.2. Résultats	105
8.	1.3. Discussion et conclusion	113
8.2	2. Modèle MLR pour le calcul de "h_LogP"	114
8.2	2.1. Méthode	114
8.2	2.2. Résultats	114

8.2.3.	Discussion et conclusion	119
8.3.	Modèle MLR pour le calcul de "h_LogS"	120
8.3.1.	Méthode	120
8.3.2.	Résultats	120
8.3.3.	Discussion et conclusion	127
8.4.	Modèle MLR pour le calcul de "LogS"	128
8.4.1.	Méthode	128
8.4.2.	Résultats	128
8.4.3.	Discussion et conclusion	134
8.5.	Modèle MLR pour le calcul de "h_mr"	134
8.5.1.	Méthode	134
8.5.2.	Résultats	134
8.5.3	.Discussion et conclusion	142
8.6.	Modèle MLR pour le calcul de "mr"	142
8.6.1	.Méthode	142
8.6.2	.Résultats	142
8.6.3	.Discussion et conclusion	151
8.7.	Modèle MLR pour le calcul de "TPSA"	151
8.7.1	.Méthode	151
8.7.2	.Résultats	151
8.7.3	.Discussion et conclusion	156
8.8.	Modèle MLR pour le calcul du "BBB permiability"	156
8.8.1	.Méthode	156
8.8.2	.Résultats	156
8.8.3	.Discussion et conclusion	166
8.9.	Modèle MLR pour le calcul de "CNS permiability"	166
8.9.1	.Méthode	166
8.9.2	. Résultats	167

8.9.3.Di	iscussion et conclusion	171
8.10. M	odèle MLR pour le calcul "d'Intestinal absorption"	172
8.10.1.	Méthode	172
8.10.2.	Résultats	172
8.10.3.	Discussion et conclusion	176
8.11. M	odèle MLR pour le calcul de "Caco2 permiability"	176
8.11.1.	Méthode	176
8.11.2.	Résultats	176
8.11.3.	Discussion et conclusion	179
8.12. M	odèle MLR pour le calcul de "Oral rat chronic toxicity (LOAEL)"	180
8.12.1.	Méthode	180
8.12.2.	Résultats	180
8.12.3.	Discussion et conclusion	183
8.13. M	odèle MLR pour le calcul du "Minnow Toxicity"	183
8.13.1.	Méthode	183
8.13.2.	Résultats	183
8.13.3.	Discussion et conclusion	187
	onception et optimisation des modèles prédictifs par réseaux de es artificiels	
9.1. M	odèle ANN pour le calcul de "LogP"	188
9.1.1.M	éthode	188
9.1.2.R	ésultats	188
9.1.3.D	iscussion et conclusion	191
9.2. M	odèle MLR pour le calcul du "H_LogP"	192
9.2.1.M	éthode	192
9.2.2.R	ésultats	192
9.2.3.D	iscussion et conclusion	195
9.3. M	odèle MLR pour le calcul du "H_LogS"	196
9.3.1.M	éthode	196

9.3.2.Résultats	196
9.3.3. Discussion et conclusion	199
9.4. Modèle MLR pour le calcul de "LogS"	200
9.4.1.Méthode	200
9.4.2. Résultats	200
9.4.3. Discussion et conclusion	203
9.5. Modèle MLR pour le calcul du "H_Mr"	204
9.5.1.Méthode	204
9.5.2.Résultats	204
9.5.3. Discussion et conclusion	207
9.6. Modèle MLR pour le calcul de "Mr"	208
9.6.1.Méthode	208
9.6.2. Résultats	208
9.6.3. Discussion et conclusion	211
9.7. Modèle MLR pour le calcul du "TPSA"	212
9.7.1.Méthode	212
9.7.2.Résultats	212
9.7.3. Discussion et conclusion	215
9.8. Modèle MLR pour le calcul de "BBB permiability"	216
9.8.1.Méthode	216
9.8.2.Résultats	216
9.8.3. Discussion et conclusion	219
9.9. Modèle MLR pour le calcul de "CNS permiability"	220
9.9.1.Méthode	220
9.9.2.Résultats	220
9.9.3. Discussion et conclusion	223
9.10. Modèle MLR pour le calcul "d'Intestinal absorption"	224
9.10.1. Méthode	224

9.10.2.	Résultats	224
9.10.3.	Discussion et conclusion	227
9.11. Modèle MLR pour le calcul de "Caco2 permiability"		228
9.11.1.	Méthode	228
9.11.2.	Résultats	228
9.11.3.	Discussion et conclusion	231
9.12. Modè	ele MLR pour le calcul de "Oral rat chronic toxicity (LOAEL) "	232
9.12.1.	Méthode	232
9.12.2.	Résultats	232
9.12.3.	Discussion et conclusion	235
9.13. Modè	ele MLR pour le calcul de "Minnow Toxicity"	236
9.13.1.	Méthode	236
9.13.2.	Résultats	236
9.13.3.	Discussion et conclusion	239
10. Discu	ssion générale	240
11. Conc	lusion générale	244
Références	bibliographiques	
Annexes		
Résumé		

ABSTRACT

The physicochemical and biological properties of organic compounds play a crucial role in various fields such as drug manufacturing, development of analytical methods, and toxicity assessment. Prediction models for structure-property relationships (QSPR) and structure-activity relationships (QSAR) offer a promising solution for rapidly and cost-effectively estimating these properties.

In this study, we developed QSPR and QSAR models using relevant chemical descriptors and chemometric techniques. The dataset included the structures of 472 organic molecules sourced from the PubChem and Mol-Instincts databases. 383 descriptors were calculated for each structure, with 354 obtained using the MOE software and 29 via the pkCSM server.

After preprocessing the data, we selected 264 descriptors, of which 222 were used as independent variables and 26 as responses. The dataset was divided using the Kennard Stone algorithm.

An initial modeling was performed using multiple linear regression (MLR) with simple descriptors that are easily accessible and straightforward to use. Various variable selection methods (forward, backward, stepwise, and genetic algorithm) were employed.

The chosen responses for the chemometric models were: logP(o/w), h_logP, logS, h_logS, mr, h_mr, TPSA, Caco2 permeability, Intestinal absorption, BBB permeability, CNS permeability, Oral Rat Chronic Toxicity (LOAEL), and Minnow toxicity.

MLR yielded models with R^2 values ranging from 0.252 to 0.987. Among the 14 studied responses, 12 models achieved $R^2 \ge 0.6$.

To improve predictions, we also explored models based on artificial neural networks (ANN). The ANN models outperformed MLR significantly, with R^2 values ranging from 0.394 to 0.999. Among the 14 studied responses, 12 ANN models achieved $R^2 \ge 0.7$, and 9 models achieved $R^2 \ge 0.9$.

In conclusion, the results confirm the effectiveness of MLR and ANN models for accurate modeling and prediction of the studied organic molecule properties. These approaches offer promising prospects for rapid and cost-effective estimation of physicochemical and biological properties of organic compounds.

Keywords: QSPR, QSAR, chemometrics, organic molecules, Kennard Stone, multiple linear regression, artificial neural networks.