REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE CONSTANTINE 3

FACULTE GENIE DES PROCEDES DEPARTEMENT GENIE CHIMIQUE

N° d'ordre :		
Série :		
	Mémoire de Master	
Filière: Génie des procédés		Spécialité : Génie chimique

TITRE

Étude expérimentale et numérique d'une installation Panneaux - Etangs solaires au niveau de SOLARENY à Oran

Dirigé par: Présenté par :

Mme ZERMANE Samah BENABBES Souad

Grade: MCA AMIRECHE Lina

Année Universitaire 2023/2024.

Session: juin

Table de matière

Introduction générale	Erreur! Signet non défini.
1 Etude théorique et bibliographique	Erreur ! Signet non défini.
1.1 Les énergies renouvelables	Erreur! Signet non défini.
1.1.1 Définition	Erreur! Signet non défini.
1.1.2 Types des énergies renouvelable	Erreur! Signet non défini.
1.2 Les étangs solaires	Erreur! Signet non défini.
1.2.1 Définition	Erreur! Signet non défini.
1.2.2 Principe	Erreur! Signet non défini.
1.2.3. Les types des étangs solaires	Erreur ! Signet non défini.
1.3 Le photovoltaïque	Erreur ! Signet non défini.
1.3.1 Définition :	Erreur ! Signet non défini.
1.3.2 Les différents types de panneaux photovolt	aïques : Erreur ! Signet non défini.
1.3.3Les avantage et les inconvénients du photov	oltaïque : Erreur ! Signet non défini.
1.4 Recherche bibliographique	Erreur! Signet non défini.
2 Rapport de la formation sur les panneaux solaires	Erreur ! Signet non défini.
2.1Instrumentation:	Erreur ! Signet non défini.
2.2 Installation :	Erreur ! Signet non défini.
2.2.1 Calculer les besoins électriques	Erreur ! Signet non défini.
2.2.2 Installation circuits en série et en parallèle :	Erreur ! Signet non défini.
2.2.3 Vérifier la faisabilité de votre installation so	laireErreur ! Signet non défini.
2.2.4 Choisir vos panneaux et votre installateur	Erreur ! Signet non défini.
2.3 Coût de l'installation de panneaux solaires	Erreur! Signet non défini.
2.4 La maintenance des PV :	Erreur! Signet non défini.
2.4.1 Entretien et durée de vie des panneaux sola	ires Erreur ! Signet non défini.
2.4.2 Protéger et nettoyer ses panneaux solaires.	Erreur! Signet non défini.
2. 5 Réalisation - Relation entre PV- étangs :	Erreur ! Signet non défini.
2. 6. Le stockage thermique inter saisonnier	Erreur! Signet non défini.
3 les étangs solaires - formulation mathématique	Erreur ! Signet non défini.
3.1 Problématique -CONCEPT DE L'ÉTANG	Erreur! Signet non défini.
3.2 Les différents types de transfert de chaleur :	Erreur ! Signet non défini.
3.3 Bilan énergétique :	Erreur ! Signet non défini.
3.4 Modèle mathématique final de l'étang :	Erreur Signet non défini

3.5 Formulation Numérique Erreur ! Signet non défin
3.5.1 Choix de la méthode numérique du problème Erreur ! Signet non défin
3.5.2 Maillage Erreur ! Signet non défin
3.5.3Approximation des dérivées Erreur ! Signet non défin
3.5.4 Discrétisation des équations des systèmes étudiés Erreur ! Signet non défin
- Schéma explicite : Erreur ! Signet non défin
- Schéma implicite : Erreur ! Signet non défin
3.6 Equations Algébriques du Système solaire peu profond Erreur! Signet non défin
3.7 Etapes du code Fortran Erreur ! Signet non défin
3.8 RESULTATS ET DISCUSSION Erreur ! Signet non défin
3.8.1 Effet du temps sur la distribution de température du procédé de stockage d'énergie Erreur ! Signet non défini.
3.8.2 Effet de la profondeur sur la température du procédé de stockage d'énergie Erreur Signet non défini.
3.8.3 Réalisation des étangs solaire – PV : Erreur ! Signet non défin
3.9 Résolution par Comsol Multi-physics Erreur ! Signet non défin
Conclusion Générale Erreur ! Signet non défin
Liste bibliographique : Erreur ! Signet non défin

Liste de figure :

Figure 1-1 Energie Solaire	Erreur! Signet non defini.
Figure 1-2 Energie eolienne	Erreur! Signet non defini.
Figure 1-3 Energie hydraulique	Erreur! Signet non defini.
Figure 1-4 Energie de la biomasse	Erreur! Signet non defini.
Figure 1-5 Energie geothermique	Erreur! Signet non defini.
FIGURE 1-6 COMBINAISON ETANG SOLAIRE ET PV	ERREUR! SIGNET NON DEFINI.
FIGURE 1-7 ETANGS SOLAIRE PEU PROFOND	Erreur! Signet non defini.
FIGURE 1-8 PANNEAUX PHOTOVOLTAIQUE	ERREUR! SIGNET NON DEFINI.
Figure 1-9 Cellules monocristallines	ERREUR! SIGNET NON DEFINI.
FIGURE 1-10 PANNEAUX POLYCRISTALLINS	Erreur! Signet non defini.
FIGURE 1-11 PANNEAU AMORPHE	Erreur! Signet non defini.
FIGURE 2-1 ONDULEUR SOLAIRE HYBRIDE	Erreur! Signet non defini.
Figure 2-2 micro onduleur	ERREUR! SIGNET NON DEFINI.
FIGURE 2-3 SCHEMA DE FONCTIONNEMENT DES PANNEAUX SOLAIRE AVEC BATTERI	E Erreur! Signet non defini.
FIGURE 2-4 INSTALLATION EXPERIMENTALE PV AVEC BATTERIE	ERREUR! SIGNET NON DEFINI.
FIGURE 2-5 REGULATEUR DE LA CHARGE SOLAIRE	ERREUR! SIGNET NON DEFINI.
FIGURE 2-6 LES DIFFERENTS TYPES DES PANNEAUX SOLAIRES	Erreur! Signet non defini.
FIGURE 2-7 RESERVOIRS D'EAU CHAUDE DANS UNE STATION DE COGENERATION	Erreur! Signet non defini.
FIGURE 3-1 SCHEMA POUR ETANG SOLAIRE	Erreur! Signet non defini.
FIGURE 3-2 L'ELEMENT DE VOLUME	ERREUR! SIGNET NON DEFINI.
FIGURE 3-3 SCHEMA DU MAILLAGE UNIFORME	ERREUR! SIGNET NON DEFINI.
FIGURE 3-4 ETAPE RESOLUTION FORTRAN	Erreur! Signet non defini.
Figure 3-5 Effet du temps sur la temperature du procede de stockage d'e	ENERGIEErreur! Signet non
DEFINI.	
Figure 3-6 effet de la profondeur sur la temperature du procede de stoc	KAGE D'ENERGIE Erreur!
SIGNET NON DEFINI.	
FIGURE 3-7 DIMENSIONNEMENT PAR PVSYST	Erreur! Signet non defini.
FIGURE 3-8 DIMENSIONNEMENT PAR PV-SOL	ERREUR! SIGNET NON DEFINI.
FIGURE 3-9 SCHEMATIQUE POUR ETANG PEU PROFOND	ERREUR! SIGNET NON DEFINI.
Figure 3-10 maillage par Comsol	ERREUR! SIGNET NON DEFINI.
FIGURE 3-11 SURFACEVDE L'ETANG A 8 HEURES	Erreur! Signet non defini.

Resumé

Les énergies renouvelables sont des énergies inépuisables, réutilisables. Elles sont issues des éléments naturels : le vent, les chutes d'eau, les marées, le soleil, ce denier joue un rôle principal dans le fonctionnement des étangs solaires, qui agissent comme des collecteurs thermiques, absorbant et stockant la chaleur solaire pour ensuite la transférer à un fluide caloporteur. L'optimisation du transfert thermique est essentielle dans ces processus. Notre recherche explore l'utilisation de panneaux solaires, pour améliorer l'efficacité des étangs solaires en augmentant leur capacité d'absorption solaire. Cette modélisation permettra d'identifier les paramètres clés qui influent sur les performances des étangs, et ainsi de proposer des recommandations pour leur conception et leur exploitation optimales. Deux grandes parties ont été étudiés une partie pratique sur les panneaux et une modélisation sur les étangs. En fin de compte, ce travail vise à contribuer à l'avancement des connaissances dans le domaine de l'énergie solaire en proposant des solutions innovantes et efficaces pour la capture et le stockage de l'énergie solaire.

Mots clés: Transfert Thermique-Energie Renouvelable -Panneaux Solaire-Etang Solaire -Modélisation

Abstract:

Renewable energies are inexhaustible and reusable sources of energy. They originate from natural elements such as wind, waterfalls, tides, and the sun. The latter plays a crucial role in the functioning of solar ponds, which act as thermal collectors by absorbing and storing solar heat and then transferring it to a heat transfer fluid. Optimizing thermal transfer is essential in these processes. Our research explores the use of solar panels to improve the efficiency of solar ponds by increasing their solar absorption capacity. This modeling will help identify the key parameters that influence the performance of the ponds, allowing us to propose recommendations for their optimal design and operation. Two major aspects were studied: a practical aspect focused on the panels and a modeling aspect focused on the ponds. Ultimately, this work aims to contribute to the advancement of knowledge in the field of solar energy by proposing innovative and efficient solutions for capturing and storing solar energy.

Keywords: Thermal Transfer - Renewable Energy - Solar Panels - Solar Pond - Modeling

الملخص

والجزر، والمد والشلالات، الرياح، مثل الطبيعية العناصر من تنشأ وهي الاستخدام لإعادة وقابلة تنضب لا طاقة مصادر هي المتجددة الطاقات نقلها ثم الشمس حرارة وتخزين امتصاص طريق عن حرارية كمجمعات تعمل التي الشمسية البرك عمل في رئيسيًا دورًا الأخيرة تلعب والشمس البرك كفاءة لتحسين الشمسية الألواح استخدام بحثنا يستكشف العمليات هذه في أساسي أمر الحراري النقل تحسين إن المحرارة ناقل سائل إلى البرك، أداء على تؤثر التي الرئيسية المعايير تحديد في النمذجة هذه ستساعد الشمسية الطاقة امتصاص على قدرتها زيادة خلال من الشمسية التي والنمذجة الألواح على يركز الذي العملي الجانب :رئيسيين جانبين دراسة تمت الأمثل والتشغيل للتصميم توصيات بتقيم لنا يسمح مما مبتكرة حلول اقتراح خلال من الشمسية الطاقة مجال في المعرفة تقدم في المساهمة إلى العمل هذا يهدف المطاف، نهاية في البرك على تركز مبتكرة حلول اقتراح خلال من الشمسية الطاقة وتخزين لالتقاط وفعالة

النمذجة _ الشمسية البرك - الشمسية الألواح - المتجددة الطاقة - الحراري النقل :الرئيسية الكلمات