République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Salah BOUBNIDER - Constantine

Faculté de Médecine

Département de Pharmacie

Mémoire de fin d'étude pour l'obtention du diplôme de

DOCTEUR EN PHARMACIE

LES MILIEUX DE CULTURE EN BACTERIOLOGIE

Encadré par:

> Dr. ALLAG.H

Maitre Assistant en

Microbiologie

Présenté par :

- BOUCHELOUKH Inchirah
- CHEBBAH Ibtissem
- GRABSI Kaoutar
- HARBI Hanene

Membre de jury:

Dr. ZEKRI.S

Dr. BASLI.H

Année universitaire: 2021-2022

Table des matières

Li Li	iste des iste des itroduc	s table s abrév tion g	res	X XI 1
2	Les	comp	osants chimiques des milieux de culture	7
	2.1	Nutri	iment	8
	2.2	Facte	eurs de croissances	9
	2.3	Subst	tances plus ou moins facultatives	9
	2.4	Produ	uits biologiques	11
3	Prép	paratio	on des milieux de culture	13
4	Clas	ssifica	tion des milieux de culture	18
	4.1	Class	sification selon la composition chimique	18
	4.1.	1 N	Milieux naturels ou empiriques	18
	4.1.	2 1	Milieux synthétiques	19
	4.1.	3 1	Milieux semi-synthétiques	20
	4.2	Class	sification selon leur nature physique	20
	4.2.	1 N	Milieu de culture liquide	20
	4.2.	2 I	Milieu de culture gélosé ou solide	20
	4.2.	3 I	Milieu semi –solide, semi-liquide ou faiblement gélosé	20
	4.2.	4 1	Milieu bi-phasique	20
	4.3	Class	sification Selon l'Utilisation	21
	4.3.	1 N	Milieux Ordinaire (de base)	21
	4.	.3.1.1	Le Bouillon Nutritif	21
	4.	.3.1.2	Gélose Nutritif	22
	4.3.	2 I	Milieux sélectif	23
	4.	.3.2.1	Milieu Chapman (MSA)	24
	4.	.3.2.2	Milieu Hektoen	25
	4.	.3.2.3	Milieu Dirgalski:	27
	4.	.3.2.4	Milieu Mac Conkey	28

4.3.2.5	Gélose SS	29
4.3.2.6	Milieu Gélose au Cétrimide	30
4.3.2.7	Milieu Loweinstein Jensen	31
4.3.3	Milieux non sélectifs enrichis	33
4.3.3.1	Gélose au sang frais	33
4.3.3.2	Gélose chocolat, gélose au sang cuit	36
4.3.3.3	Milieux enrichis avec divers liquides biologiques	39
4.3.4	Milieux non selective, non enriches	40
4.3.4.1	Gélose CLED	40
4.3.4.2	Gélose BCP	43
4.3.5	Milieu Electif	44
4.3.6	Milieux d'enrichissement	44
4.3.6.1	Le bouillon cœur-cervelle	45
4.3.6.2	Bouillon glucosé tamponnée	46
4.3.6.3	Bouillon SELENITE CYSTINE	47
4.3.6.4	Eau peptonée alcaline	47
4.3.7	Milieux de culture pour l'identification	49
4.3.7.1	Les testes biochimiques utilisés couramment « Galerie classique »	50
4.3.7	7.1.1 Gélose viande-foie	50
4.3.7	7.1.2 Bouillon nitraté	51
4.3.7	7.1.3 Mannitol-mobilité	52
4.3.7	7.1.4 Milieu Clark et Lubs	53
4.3.7	7.1.5 Milieu urée –indole	55
4.3.7	7.1.6 Milieu TSI (trois sucres et fer)/Triple Suger Iron	58
4.3.7	7.1.7 Milieu MEVAG (milieu de Hugh et Leifson)	59
4.3.7	7.1.8 Citrate de Simmons	61
4.3.7.2	Microméthodes, Galeries miniaturisées	62
4.3.8	Milieu pour l'antibiogramme:	69
4.3.9	Milieux de conservation:	71
4.3.10	Milieux chromogènes	72

4.4 Classification selon le mode de stérilisation	76
5 Qualité exigibles d'un milieu de culture	77
6 Contrôle de qualité des milieux de culture	78
Conclusion générale	79

Résumé

Un milieu de culture est un préparation solide ou liquide au laquelle les microorganisme peuvent se multiplier en leur apportant les exigences nutritives à la survie des bactéries , il doivent par ailleurs posséder les propriétés physico-chimique convenant à une culture optimale (PH, isotonie, potentiel oxydoréduction).

Les travaux de Pasteur et Koch ont conduit à l'emploi des milieux de culture pour cultiver les germes. Robert Koch réussit a isoler bacillus de charbon dans les dix années qui suivent et par l'emploi systématique des milieux de culture solide, la plupart des bactéries pathogènes peuvent être isolé et obtenus en culture pure.

La composition d'un milieu de culture varie, elle est choisie en fonction du but à atteindre et des besoins requis par la bactérie.

La préparation d'un milieu de culture peut se faire soit à partir d'une poudre lyophilisé, soit directement prêt à l'emploi, l'on peut couler telle quelle, ou l'enrichir en boites de Pétri.

Il existe une grande variété des milieux de culture selon leur composition chimique (synthétique, empirique, semi-synthétique), selon leur nature physique (milieux liquide, solide, semi-solide, biphasique), selon leur utilisation soit: pour isoler les bactéries du milieu qu'il est contient, pour les identifier, pour étudier les propriétés (sensibilité des antibiotique) éventuellement pour conserver.

Pour s'assurer que les milieux sont de bonne qualité et capable de donner des résultats satisfaisants un système de gestion de la qualité approprié est essentiel.

Avec la multiplication des analyses bactériologiques se sont développé des systèmes permettant d'associer rapidité, reproductibilité: les galeries API, les milieux chromogènes.

Mots clés: Milieu de culture, bactérie, empirique, isoler, identifier, galerie API, milieux chromogènes.

Abstract

A culture medium is a solid or liquid preparation in which microorganisms can multiply by providing them with the nutrient requirements for bacterial survival. It must also have the physico-chemical properties suitable for optimal cultivation (PH, isotonic, redox potential).

The work of Pasteur and Koch led to the use of culture media to cultivate germs. Robert Koch succeeded in isolating bacillus from anthrax within ten years and through the systematic use of solid culture media, most pathogenic bacteria can be isolated and obtained in pure culture.

The composition of a culture medium varies and is chosen according to the purpose and requirements of the bacteria.

The preparation of a culture medium can be done either from a freeze-dried powder, or directly ready to use, it can be poured as is, or enriched in Petri dishes.

There is a great variety of culture media according to their chemical composition (synthetic, empirical, semi-synthetic), according to their physical nature (liquid, solid, semi-solid, biphasic media), according to their use, i.e. to isolate bacteria from the medium it contains, to identify them, to study their properties (antibiotic sensitivity), and possibly to preserve them.

To ensure that media are of good quality and capable of giving satisfactory results an appropriate quality management system is essential.

With the increase in bacteriological analyses, systems have been developed that combine speed and reproducibility: API System, chromogenic media.

Keywords: culture medium, bacterial, empirical, isolate, identify, API System, chromogenic media.

ملخص

وسط الاستزراع عبارة عن مستحضر صلب أو سائل يمكن أن تتكاثر فيه الكائنات الحية الدقيقة من خلال تزويدها بالمتطلبات الغذائية لبقاء البكتيريا ، كما يجب أن تتمتع أيضًا بالخصائص الفيزيائية والكيميائية المناسبة للتكاثر الأنسب (معدل الحموضة، التوتر، الأكسدة).

أدى عمل باستور وكوخ إلى استخدام وسائط الاستزراع لزراعة الجراثيم. نجح روبرت كوخ في عزل العصيات من الجمرة الخبيثة في غضون عشر سنوات ، ومن خلال الاستخدام المنتظم لوسائل الاستزراع الصلبة ، يمكن عزل معظم البكتيريا المسببة للأمراض والحصول عليها في مزرعة نقية.

يختلف تكوين وسط الاستزراع ، ويتم اختياره وفقًا للهدف المراد تحقيقه والاحتياجات التي تتطلبها البكتيريا.

يمكن تحضير وسط استزراع إما من مسحوق مجفف بالتجميد ، أو جاهز للاستخدام مباشرة ، ويمكن سكبه كما هو ، أو إثرائه في أطباق بتري.

توجد مجموعة متنوعة من وسائط الاستزراع وفقًا لتركيبها الكيميائي (التركيبي، التجريبي، شبه اصطناعي)، وفقًا لطبيعتها الفيزيائية (سائل، صلب، شبه صلب، وسط ثنائي الطور)، وفقًا لاستخدامها إما: لعزل البكتيريا من البيئة التي تحتوي عليها، للتعرف عليها، لدراسة الخصائص (حساسية المضادات الحيوية) التي يمكن الاحتفاظ بها.

لضمان أن تكون الوسائط ذات نوعية جيدة وقادرة على إعطاء نتائج مرضية، من الضروري وجود نظام إدارة جودة مناسب.

مع انتشار التحليلات البكتريولوجية ، تم تطوير أنظمة للجمع بين السرعة وقابلية التكاثر: نظام API، الوسائط الصبغية.

الكلمات المفتاحية:

وسط الاستزراع، البكتيريا، التجريبي، لعزل البكتيريا ،التعرف عليها، نظام API، الوسائط الصبغية.

BOUCHLOUKH Inchirah; CHEBBAH Ibtissem

GRABSI Kaouter; HARBI Hanene

MILIEUX DE CULTURE EN BACTERIOLOGIE

Mémoire de fin d'étude pour l'obtention du diplôme de

DOCTEUR EN PHARMACIE

Résumé

Un milieu de culture est un préparation solide ou liquide au laquelle les microorganisme peuvent se multiplier en leur apportant les exigences nutritives à la survie des bactéries, il doivent par ailleurs posséder les propriétés physico-chimique convenant à une culture optimale (PH, isotonie, potentiel oxydoréduction).

Les travaux de Pasteur et Koch ont conduit à l'emploi des milieux de culture pour cultiver les germes. Robert Koch réussit a isoler bacillus de charbon dans les dix années qui suivent et par l'emploi systématique des milieux de culture solide, la plupart des bactéries pathogènes peuvent être isolé et obtenus en culture pure.

La composition d'un milieu de culture varie, elle est choisie en fonction du but à atteindre et des besoins requis par la bactérie.

La préparation d'un milieu de culture peut se faire soit à partir d'une poudre lyophilisé, soit directement prêt à l'emploi, l'on peut couler telle quelle, ou l'enrichir en boites de Pétri.

Il existe une grande variété des milieux de culture selon leur composition chimique (synthétique, empirique, semi-synthétique), selon leur nature physique (milieux liquide, solide, semi-solide, bi phasique), selon leur utilisation soit: pour isoler les bactéries du milieu qu'il est contient, pour les identifier, pour étudier les propriétés (sensibilité des antibiotique) éventuellement pour conserver.

Pour s'assurer que les milieux sont de bonne qualité et capable de donner des résultats satisfaisants un système de gestion de la qualité approprié est essentiel.

Avec la multiplication des analyses bactériologiques se sont développé des systèmes permettant d'associer rapidité, reproductibilité: les galeries API, les milieux chromogènes.

Mots clés: Milieu de culture, bactérie, empirique, isoler, identifier, galerie API, milieux chromogènes.

Directeur de thèse: Docteur Hamoudi ALLAG

Année universitaire: 2021/2022