REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE SALAH BOUBNIDER CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES

DEPARTEMENT DE GENIE PHARMACEUTIQUE

N° d'ordre	:	
Série :		

Mémoire de Master Filière : Génie des procédés Spécialité : Génie pharmaceutique

EVALUATION COMPARATIVE DES FLUIDES DE REFRIGERATION ALTERNATIFS AU R134a PAR LE LOGICIEL EES

Dirigé par: Présenté par :

Dr. DJEZZAR Souad DENECHE Hadil

CHIBOUT Nouara

GHAOUI Nahla

Année universitaire 2023/2024

Session juin

Table des matières

<u>Introduction générale</u>	1
Chapitre I : Etude bibliographique	
1.1 Introduction	2
1.2 Histoire de la réfrigération	2
1.3 Application en industrie pharmaceutique	3
1.3.1 Emballage, Transport et Stockage	4
1.3.2 Chaine du froid	5
1.4 Production du froid	6
1.4.1 Modes de production de froid	6
1.4.2 Machines production du froid	6
1.4.2.1 Système a absorption	7
1.4.2.2 Système à compression de vapeur à simple effet	8
1.5 Fluide de réfrigération	10
1.5.1 Nomenclature des fluides frigorigènes	10
1.5.2 Classification des fluides frigorigènes	11
1.5.3 Critères de choix d'un fluide frigorigènes	13
1.5.4 critères liés à l'environnement	14
1.5.4.1 Couche d'ozone	14
1.5.4.2 Effet de serre	15
1.6 Fluide utilisée dans ce Travail	15
1.7 Conclusion	16
Chapitre 2 : modélisation et optimisation du cycle à compression de vapeur	
2.1 Introduction	17
2.2 Etude thermodynamique	17
2.2.1 Diagramme de Mollier (P-H)	17
2.2.2 Cycle de Carnot	19
2.2.3 Cycle frigorifique de la machine à compression de vapeur	19
2.2.3.1 Cycle frigorifique théorique	20

2.2.3.2 Cycle frigorifique parfait	21
2.2.3.3Cycle frigorifique réel	22
2.3 Bilans énergétiques du système frigorifique à simple effet	22
2.3.1 Bilans énergétiques individuels	23
2.3.1.1 Bilan dans l'évaporateur	23
2.3.1.2 Bilan énergétique dans le compresseur	24
2.3.1.3 Bilan dans le condenseur	25
2.3.1.4 Bilan dans le détendeur	25
2.3.2 Bilan global de la machine à compression de vapeur	26
2.4 Logiciel Engineering Equation Solver EES	28
2.4.1 Menu file	29
2.4.2 Menu option	30
2.4.2.1 Variable Info	31
2.4.2.2 Fonction information	32
2.4.2.3 Menu Calculate	33
2.4.3 Menu plot	33
2.4.4 Menu Windows	33
2.4.5 Menu help	34
2.5 Conclusions	35
Chapitre 3 : Résultats et discussion	
3.1 Introduction	36
3.2 Etude et analyse des cycles	36
3.2.1 Analyse du système à compression de vapeur à simple effet sans échangeur de	
chaleur	36
3.2.1.1 Cycle sans Echangeur de chaleur	36
3.2.1.2 Effet de la température de saturation sur la pression de saturation du	
cycle	37
3.2.1.3 Effet de la température d'évaporation et de condensation sur la capacit	:é
frigorifique du cycle	39

3.2.1.4 Effet des températures d'évaporation et de condensation sur la	
performance du cycle	41
3.2.1.5 Effet de la température d'évaporation sur le rendement global du	
cycle	43
3.2.2 Analyse du système à compression de vapeur à simple effet avec échangeur de	
chaleur.	45
3.2.2.1 Cycle avec échangeur de chaleur	45
3.2.2.2 Effet des températures d'évaporation et de condensation sur la	
performance du cycle	46
3.2.2.3 Effet de la température de condensation sur la température de	
refoulement du cycle	49
3.2.2.4 Effet de la température de condensation sur la capacité frigorifique	
du cycle	50
3.3 Conclusion	51
Conclusion générale	52
<u>Annexe</u>	
<u>Bibliographie</u>	
Résumé	

<u>Résumé</u>

Le travail réalisé concerne la simulation de la machine à compression de vapeur à simple effet et fonctionnant avec le R_{134a} par le logiciel EES.

Nous avons élaboré une étude comparative sur la machine à simple effet avec échangeur de chaleur et sans échangeur de chaleur fonctionnant avec plusieurs réfrigérants issus de la littérature. Les résultats obtenus montrent que le R_{152a} est le plus performant dans le cycle avec échangeur de chaleur, mais il a une température de refoulement plus élevée par rapport aux autres réfrigérants considérés : $R_{290,\,R143a}$, R_{134a} , et R_{32} .

Le R₇₁₇ présente le fluide qui donne le coefficient de performance COP le plus élevé dans le cycle sans échangeur de chaleur.

La comparaison du fluide montre que le R_{134a} est plus performant que le R_{507a} et le R_{502} , et meilleur que le R_{404a} .

Cette analyse nous indique que le R_{600a} , $R_{290, et}$ le R_{717} sont des fluides performants, naturels non nocifs pour l'environnement, et donc peuvent remplacer le R_{134a} .

Mots clés

Coefficient de performance, COP, réfrigérants

ملخص

يتعلق العمل المنجز بمحاكاة آلة ضغط البخار أحادية المفعول التي تعمل باستخدام R134a باستخدام برنامج. EES

لقد قمنا بتطوير دراسة مقارنة على الآلة ذات التأثير الواحد ذات المبادل الحراري وبدون المبادل الحراري والتي تعمل بعدة مبردات من الأدبيات. أظهرت النتائج التي تم الحصول عليها أن R152a هو الأكثر كفاءة في الدورة مع المبادل الحراري، ولكن لديه درجة حرارة تفريغ أعلى مقارنة مع المبردات الأخرى التي تم النظر فيها R290، و R134a، R143a، و R32.

يقدم R717 السائل الذي يعطى أعلى معامل أداء COP في الدورة بدون مبادل حراري.

تظهر مقارنة السوائل أن أداء R134a أفضل من R507a و R502و R502وأفضل من.R404a و R404a و R502وأفضل من.R404a يخبرنا هذا التحليل أن R600a و R290و R717هي سوائل طبيعية عالية الأداء وغير ضارة بالبيئة، وبالتالى يمكن أن تحل محل.R134a

الكلمات المفتاحية

معامل الأداء، COP، المبردات

Summary:

The work carried out concerns the simulation of the single-effect steam compression machine operating with R134a using the EES software. We conducted a comparative study on the single-effect machine with and without heat exchanger operating with various refrigerants from the literature. The results show that R152a is the most efficient in the cycle with a heat exchanger, but it has a higher discharge temperature compared to other considered refrigerants: R290, R143a, R134a, and R32. R717 presents the fluid that provides the highest coefficient of performance COP in the cycle without a heat exchanger.