

Université de Constantine 3 Salah Boubnider Faculté de Génie des Procédés Département de Génie de l'Environnement

N° de série : N° d'ordre :

TRAITEMENT DES EAUX COLOREES PAR COUPLAGE DES PROCEDES MEMBRANAIRES AUX TECHNIQUES PHYSICO-CHIMIQUES ET/OU ELECTROCHIMIQUES

THESE

Présentée pour l'Obtention du Diplôme de Doctorat en Génie des Procédés Option : Génie de l'Environnement

Par Walid SERAGHNI

Devant le Jury Composé de :

Sihem ARRIS	Présidente	Professeur	Université Constantine 3
Fouzia BALASKA	Directrice	MCA	Université Constantine 3
Nadjet BOULEKROUN	Examinatrice	MCA	Université Constantine 3
Kerroum DERBAL	Examinateur	Professeur	ENPC- Constantine
Sihem BELAIDI	Examinatrice	Professeur	Université Constantine 1
Zoheir NEDJAR	Examinateur	Professeur	Université de Khenchela

Année Universitaire 2025-2026

Table de matière

REMERCIEMENTS	v
Table de matière	i
Liste des figures	v
Liste des tableaux	ix
Liste des abréviations	x
Résumé	xii
Abstract	xiii
ملخص	xiv
Introduction Générale	1
Chapitre I : Revue bibliographique	5
Partie A : Généralités sur les colorants	5
1.A.1 Introduction	5
1.A.2 Aperçu général de la pollution des ressources en eau	5
1.A.3 Impact des activités industrielles sur la qualité de l'eau	6
1.A.4 Toxicité des effluents de l'industrie textile	6
1.A.5 Les colorants synthétiques dans l'industrie textile	7
1.A.6 Classification des colorants textiles	8
1.A.6.1 Classification chimique	8
1.A.6.2 Classification tinctoriale	9
1.A.7 Toxicité des colorants	10
1.A.8 Situation en Algérie	10
Partie B : Procédés de traitement des colorants textiles	12
1.B.1 Introduction	12
1.B.2 Les procédés de traitement des colorants textiles	12
1.B.3 Les procédés physico-chimiques	12
1.B.3.1 Les procédés membranaires	12
1.B.3.2 La coagulation-floculation	18
1.B.3.3 L'électrocoagulation	22
1.B.4 Procédés chimiques	24
1.B.4.2 La photocatalyse	26
1.B.5 Procédés biologiques	28
Chanitre II · Matériels et méthodes	30

2.4.4 Procédé d'électrocoagulation, peroxydation électrochimique et la nanofiltration	43
2.4.5 Système de traitement MBR et eMBR	45
2.5 Analyse des protéines	47
2.6 Analyse des glucides	47
2.7 Performance d'élimination des polluants	48
2.8 Flux de perméat	48
2.9 Évaluation énergétique, consommation des électrodes et estimation des coûts	48
Partie A : Traitement du colorant Rouge Terasil par biocoagulation et microfiltration : étude expérimentale et modélisation	51
3.A.1 Introduction	51
3.A.2 Caractérisation de la membrane céramique	51
3.A.3 Optimisation de la biocoagulation	52
3.A.3.1 Détermination de la dose optimale du coagulant	52
3.A.3.2 Effet du pH de la solution de colorant synthétique	53
3.A.4 Caractérisation	54
3.A.5 Traitement d'une solution de colorant synthétique par microfiltration et biocoagulatio microfiltration	
3.A.5.1 Variation de la concentration du colorant et de la turbidité par microfiltration	55
3.A.5.2 Variation du flux de perméat	56
3.A.6 Etude comparative	58
3.A.6.1 Microfiltration et biocoagulation-microfiltration	58
3.A.6.2 Simulation et résultats expérimentaux	59
3.A.7 Conclusion	60
Partie B : Synthèse verte d'un photocatalyseur à base de ZnO à partir d'extrait de feuilles d'accelélimination efficace des colorants anioniques et cationiques	
3.B.1 Introduction	62
3.B.2 Étude de caractérisation de l'AL-ZnO	63
3.B.3 Étude de l'adsorption de l'AL-ZnO	68
3.B.4 Performances photocatalytiques de l'AL-ZnO pour l'élimination des colorants	69
3.B.4.1 Effet du pH sur l'efficacité de AL-ZnO	69
3.B.4.2 Effet de la quantité d'AL-ZnO sur l'efficacité d'élimination	72
3.B.4.3 Influence de la concentration initiale en colorant sur l'efficacité photocatalytique ZnO	
3.B.4.4 Spectres d'absorbance de l'efficacité d'élimination des colorants en fonction du tercinétique et cycle de réutilisation dans des conditions optimales	•
3.B.4.5 Comparaison entre des photocatalyseurs contenant du ZnO synthétisé à partir d'exvégétaux et de l'AL-ZnO pour l'élimination des colorants anioniques et cationiques	
2 D C C 1 '	0.1

Partie C : Élimination photocatalytique des colorants à l'aide de nanoparticules de Zno partir d'extrait de cactus	
3.C.1 Introduction	
3.C.2 Caractérisation des nanoparticules de ZnO	83
3.C.2.1 Analyses MEB et EDX.	
3.C.2.2 Analyse du potential Zêta	84
3.C.3 Effet du pH de la solution sur l'activité photocatalytique des ZnO-NPs	85
3.C.4 Effet de la concentration de ZnO-NPs sur la performance photocatalytique	87
3.C.5 Influence de la concentration initiale du colorant sur l'efficacité photocatalyti	
3.C.6 Réutilisation des NP de ZnO dans différents types de colorants	89
3.C.7 Comparaison des études de dégradation photo-catalytique utilisant différents	matériaux ZnO90
3.C.8 Conclusion.	92
Partie D : Traitement du colorant Vert Cibacron par électrocoagulation à l'aide de chu comme électrodes	
3.D.1 Introduction	94
3.D.2 Étude paramétrique	94
3.D.2.1 Effet de l'intensité de courant	94
3.D.2.2 Effet de la conductivité de la solution	96
3.D.2.3 Effet de la concentration initiale du colorant	97
3.D.2.4 Effet de la distance inter-électrodes	98
3.D.2.5 Effet la surface immergée des électrodes	100
3.D.2.6 Effet du pH initial de la solution	101
3.D.3 Étude de caractérisation des électrodes	102
3.D.4 Étude de caractérisation du colorant	104
3.D.5 Étude de la consommation énergétique	105
3.D.5.1 Effet de l'intensité du courant	106
3.D.5.2 Effet de la conductivité de la solution	106
3.D.5.3 Effet de la concentration initiale du colorant	107
3.D.5.4 Effet de la distance inter-électrodes	108
3.D.5.5 Effet du pH initial de la solution	109
3.D.6 Conclusion	110
Partie E : Traitement d'une usée textile par électrocoagulation, peroxydation électroch procédé hybride peroxydation électrochimique-nanofiltration : Simulation du procédé	électrochimique
3.E.1 Introduction	
3.E.2 Optimisation du procédé d'électrocoagulation	
3.E.2.1 Effet de la densité de courant	
J.L.Z.1 Litel de la delisite de coutain	114

3.E.2.2 Effet du pH de la solution	116
3.E.3 Optimisation du procédé de peroxydation électrochimique	119
3.E.3.1 Effet du pH de la solution	119
3.E.3.2 Effet de la concentration en H ₂ O ₂	122
3.E.3.3 Analyse par microscope électronique à balayage (MEB) et par rayons X à dispersion d'énergie (EDX)	
3.E.4 Optimisation du système hybride peroxydation électrochimique-nanofiltration	127
3.E.5 Étude de simulation	128
3.E.6 Évaluation économique de la peroxydation électrochimique et de la nanofiltration	131
3.E.7 Conclusion	133
Partie F: Traitement d'une eau usée textile par membrane-bioréacteur et électro-membrane-bioré	
3.F.1 Introduction.	134
3.E.2 Optimisation du procédé bioréacteur à membrane (MBR)	134
3.F.2.1 Variation temporelle du flux du perméat	134
3.F.2.2 Efficacité d'élimination des colorants et la demande chimique en oxygène (DCO)	136
3.F.2.3 Étude de la variation du pH	138
3.F.2.4 Étude de la variation de la conductivité	139
3.F.2.5 Suivi de la variation des EPS et SMP	140
3.F.3 Optimisation du procédé électro-bioréacteur à membrane (eMBR)	142
3.F.3.1 Variation du flux du perméat en fonction du temps	142
3.F.3.2 Efficacité d'élimination des colorants et la demande chimique en oxygène (DCO)	144
3.F.3.3 Étude de la variation du pH	147
3.F.3.4 Étude de la variation de la conductivité	148
3.F.3.5 Suivi de la variation des EPS et SMP	150
3.F.4 Conclusion	153
Conclusion générale	155
Dáfárangas	15/

Salah Boubnider

Nom et prénom : Walid SERAGHNI

Titre : Traitement des eaux colorées par couplage des procédés membranaires aux techniques physico-chimiques et/ou électrochimiques

Thèse en vue de l'Obtention du Diplôme de Doctorat en Génie des Procédés, Option : Génie de l'Environnement

Résumé

Cette thèse s'est consacrée à l'étude et à l'évaluation de procédés physico-chimiques et avancés pour l'élimination des colorants synthétiques, largement utilisés dans l'industrie textile et difficile à traiter par les méthodes conventionnelles. Différentes approches unitaires et hybrides ont été explorées, incluant les procédés membranaires, la bio-coagulation, la photocatalyse, l'électrocoagulation, la peroxydation électrochimique, ainsi que les bioréacteurs à membrane et électro-bioréacteurs (MBR et eMBR).

Les résultats obtenus ont confirmé l'intérêt des combinaisons hybrides. Ainsi, la microfiltration associée à une bio-coagulation basée sur des extraits de feuilles de chêne (Acorn leaves) a montré une efficacité remarquable pour l'élimination du colorant Rouge Terasil, avec des performances confirmées par modélisation numérique. La photocatalyse a, quant à elle, mit en évidence le potentiel des nanoparticules de ZnO obtenues par synthèse verte à partir de deux sources végétales renouvelables : les feuilles de chêne (Acorn leaves) et le cactus. Ces catalyseurs écologiques ont permis d'atteindre des taux de dégradation supérieurs à 90 % pour différents colorants modèles, anioniques (Rouge réactif 180, Remazol Brilliant Bleu R) et cationiques (Rohdamine B, Rouge basique), tout en conservant une bonne stabilité après plusieurs cycles d'utilisation, ouvrant ainsi la voie à des applications durables. L'électrocoagulation utilisant chutes de menuiseries d'aluminium comme électrodes a également révélé un rendement élevé pour l'élimination du Vert Cibacron, tout en maintenant une consommation énergétique acceptable, renforçant ainsi la faisabilité du procédé à l'échelle industrielle.

Contrairement à ces traitements réalisés sur solutions synthétiques, certains procédés ont été évalués directement sur des effluents textiles réels. La peroxydation électrochimique, seule ou couplée à la nanofiltration, a permis d'obtenir une décoloration quasi totale et une réduction significative de la charge organique (près de 90 % de la DCO), des résultats validés par simulation numérique sous COMSOL Multiphysics. De même, la comparaison entre le bioréacteur à membrane classique (MBR) et sa version électrifiée (eMBR) a mis en évidence la supériorité du couplage électrochimie-biologie. L'eMBR s'est distingué par des temps de traitement plus courts et une meilleure réduction de la charge organique, confirmant l'intérêt de cette intégration pour le traitement d'effluents complexes.

Dans l'ensemble, ces travaux mettent en lumière le potentiel considérable des procédés avancés et hybrides pour répondre aux défis environnementaux liés aux effluents textiles. L'originalité de cette recherche réside notamment dans l'intégration de coagulants et de catalyseurs d'origine naturelle, ainsi que dans l'évaluation de procédés innovants sur des rejets réels. Ces résultats ouvrent des perspectives prometteuses pour le développement de solutions à la fois efficaces, durables et respectueuses de l'environnement dans le traitement des eaux usées industrielles.

Mots clés : Rejet textile, filtration membranaire, biocoagulation, électrocoagulation, peroxydation électrochimique, photocatalyse, bioréacteur, simulation

Directrice de thèse : Fouzia BALASKA, Université Constantine 3 Salah Boubnider

Année universitaire 2024–2025