

Ministry of Higher Education and Scientific Research
Salah Boubnider University, Constantine 3
Faculty of Medicine Department of Dental Medicine

Tutorials and MCQ
Structure of Matter & Chemical Bonds
MCQ
General and Organic Chemistry
First Year of Dental Medicine

D'Atmani - Merabet Ghania

Academic year : 2025/2026

Foreword

This work is primarily intended for first-year students of Medical studies (Dental Medicine, Medicine and Pharmacy). It is also intended for all undergraduate students and preparatory classes whose training includes general chemistry.

This book is divided into two main parts covering all topics addressed in chemical atomistics. The first part is dedicated to directed work exercises with detailed solutions for the different topics covered in the atomistics section, namely: structure of matter, structure of the atom, electronic structure of the atom, the periodic classification of chemical elements, and finally chemical bonding. The second part includes a number of MCQs related to the topics covered in lectures and directed work. Finally, the third part deals with general chemistry synthesis exam MCQs.

The students will find in this book an excellent way to assess their knowledge and practice multiple-choice questions to enhance efficiency and speed in thinking and problem-solving, which will allow them to prepare optimally for the exam day.

We have drawn on our experience as university teachers to develop a support tool that is as comprehensive and educational as possible.

Dr. Atmani -Merabet Ghania

Used Symbols, Notations, and Constants

<i>Nouns</i>	<i>Symbols</i>	<i>Values</i>
Avogadro's number	N	$6.023 \cdot 10^{23}$
Planck's constant	H	$6.62 \cdot 10^{-34} \text{ J s}$
Rydberg's constant	R _h	$1.1 \cdot 10^7 \text{ m}^{-1}$
Elementary charge	e	$1.6 \cdot 10^{-19} \text{ coulombs}$
Light speed	C	$3 \cdot 10^8 \text{ m/s}$
Electron- volt	eV	$\text{eV} = 1.602 \cdot 10^{-19} \text{ J}$

Table of Contents

<i>Introduction</i>	1
<i>Difficulty Levels Legend</i>	2

Tutorial sessions

I- Structure of Matter

<i>Tutorial 1 : The Constituents of the Atom</i>	3
<i>Tutorial 2 : The Nucleus and Radiations</i>	17
<i>Tutorial 3 : Quantum Description of the Atom and Periodic Classification of Elements</i>	32

II- Chemical bonds (Tutorial 4).....54

MCQ

<i>MCQ Structure of matter&Chemical bonds</i>	66
<i>MCQ General Chemistry&Organic Chemistry</i>	91
<i>Bibliographic references</i>	108

Introduction

General chemistry is one of the fundamental pillars of scientific training for students in medicine, pharmacy, and health sciences. It provides the essential foundations for understanding biological, biochemical, and medical phenomena, and prepares students to confidently approach the specialized disciplines of their curriculum. Among the various branches of chemistry, atomistics occupies a central place: it enables the comprehension of the intimate structure of matter, the properties of elements, and the principles that govern their interactions.

This course book has been designed as a tool for guidance and practice. It offers a structured progression that meets the needs of first-year students and those in preparatory classes:

- A first part devoted to tutorial exercises, with detailed solutions that allow step-by-step understanding of reasoning and problem-solving methods.
- A second part consisting of targeted multiple-choice questions (MCQs), aimed at testing knowledge and strengthening speed of thought.
- A third part made up of synthesis exam questions, giving students the opportunity to practice under conditions similar to real assessments.

Beyond practice, this document aims to develop essential skills:

- The ability to analyze and solve scientific problems with rigor.
- The acquisition of methodological reflexes useful for examinations.
- Self-confidence when facing evaluation situations.

We hope that this coursebook will serve as a daily companion for each student, promoting the progressive assimilation of concepts and optimal preparation for exams. It is part of a pedagogical approach that values autonomy, regular practice, and efficiency.

Difficulty Levels Legend

Symbol	Level	Description
*	Easy	Direct application of the course, basic concepts
**	Intermediate	Combination of several concepts, requires reasoning
***	Advanced	Complex exercises, cross-disciplinary or similar to exam questions

Tutorial 1

(The constituents of the atom)

Exercise n°1 *

a) Give in grams the mass of:

- $3,62 \cdot 10^{24}$ atoms of zinc (Zn : 65,37)
- $6,02 \cdot 10^{21}$ molecules of H_2O (H : 1, O : 16)

b) Calculate the number of moles of glucose. ($\text{C}_6\text{H}_{12}\text{O}_6$) in 21,6 g de $\text{C}_6\text{H}_{12}\text{O}_6$. (C : 12)

c) The iron atom (Fe) has an atomic mass of 56g, what is the mass of an iron atom in grams and in (amu).

d) Indicate the number of protons, neutrons, and electrons for : ${}_{\text{4}}^{\text{9}}\text{Be}$ ${}_{\text{13}}^{\text{27}}\text{Al}^{3+}$ ${}_{\text{16}}^{\text{32}}\text{S}^{2-}$

e) Let the aluminum nucleus (${}_{\text{13}}^{\text{27}}\text{Al}$). Give its mass in (Kg), its volume in (m^3) and its density in (Kg/m^3).

Exercise n°2***

Calculate the number of electrons of a nucleus X, with a mass number A = 10. Given that the experimental mass of the nucleus is: 10.020166 amu and that the binding energy per nucleon is : $8,88693 \cdot 10^{-13}$ joules. $(mp = 1.007278 \text{ amu} ; mn = 1.008665 \text{ amu})$

Exercise n°3 *

The natural carbon element (C = 12.011) is a mixture of two stable isotopes : ${}^{12}\text{C}$, ${}^{13}\text{C}$ knowing that the abundance of ${}^{12}\text{C}$ est 98.89 %, calculate the atomic mass of the isotope

Exercise n°4 *

1- A sample of copper oxide CuO has a mass of $m = 1.59\text{g}$. How many moles and molecules of CuO are there? Then calculate the number of Cu and oxygen atoms in this sample. $[M_{\text{Cu}} = 63.54\text{g} ; M_{\text{O}} = 16\text{g}]$

2- Let's consider the calcium atom, which has an atomic mass of 40 g. Give the mass of this atom in grams and in amu.

3- Give the number of protons, electrons, and neutrons for : ${}_{\text{20}}^{\text{40}}\text{Ca}^{2+}$ ${}_{\text{17}}^{\text{35}}\text{Cl}^{-}$

4- Calculate for the ${}^{24}\text{Mg}$ nucleus: its mass in Kg, its volume in m^3 and its density in Kg/m^3

Exercise n°5 **

Let us consider the nitrogen nucleus. $^{14}_7\text{N}$, calculate the theoretical mass of this nucleus in amu. Compare it with its actual value of 14.00751 amu.

Calculate cohesion energy of this nucleus in en Joules and MeV.

Data : mass proton = 1.007277 amu mass neutron = 1.008665 amu

Exercise n°6 *

The natural element silicon Si (Z=14) is a mixture of three stable isotopes.: ^{28}Si , ^{29}Si et ^{30}Si . The natural abundance of the most abundant isotope is 92.23%. The atomic mass of natural silicon is 28.085g.

1- Which isotope is the most abundant?

2- Calculate the natural abundance of the other two isotopes.

Exercise n°7 *

a) Give the number of moles of MgSO_4 in 40,1g.

b) Calculate the mass in grams of 3.62×10^2 zinc atoms..

c) How many carbon and oxygen atoms are there in 0.6 moles of

d) Consider the NaCl molecule with a molecular mass of 58.5 g. Give the mass of this molecule in amu and in grams.

e) Indicate the number of protons, electrons and neutrons:

Exercise n° 8*

Distinguish among the following compounds the mixtures of pure substances : H_2O , air, sand, NaOH , CH_3COOH , F_2 , CH_3COOH solution, diamond, carbon, mineral water, milk, blood.

Exercise n°9*

1- How many moles are there in 40.1 g of MgSO_4 .

2- How many grams are there in 0.4 moles of CaCO_3 .

3- Calculate the mass in grams of 3.62×10^{24} atoms of zinc(Zn) and 6.02×10^{21} H_2O molecules.

4- How many grams of CO_2 , and CO_2 molecules, and carbon and oxygen atoms are there in 0.6 moles of CO_2 ?

Data : H : 1 ; C : 12 ; O : 16 ; Mg : 24 ; S : 32 ; Ca : 40 ; Zn : 65,39

Exercise n°10*

Consider the copper atom (Cu), which has an atomic mass of 63 g. Give the mass of this atom in amu and in grams.

Consider the sodium chloride molecule NaCl, which has a molecular mass of 58.5 g. Give the mass of this molecule in amu and in grams.

Exercise n°11***

Hemoglobin is a macromolecule with a molecular mass of approximately 18.000. One cubic millimetre (1 mm³) of blood contains approximately 5×10^6 (5 million) red blood cells and a total hemoglobin mass of 0.15 mg. How many hemoglobin molecules are there in one red blood cell?

Data : Mg = 24g S = 32g O = 16g Ca = 40g C = 12g Zn = 65,37g

Exercise n°12*

1- What is the number of protons present in an atom with atomic number Z.

2- What is the number of protons and electrons in atoms : $^{24}_{12}\text{Mg}$ $^{238}_{92}\text{U}$

3- What is the number of protons and electrons in ions : $^{40}_{20}\text{Ca}^{2+}$ $^{16}_{8}\text{O}^{2-}$, $^{35}_{17}\text{Cl}^-$

4- Carbon contains two isotopes ^{12}C et ^{13}C , with respective masses of 12 and 13.0034. Given that the average mass of carbon is 12.011g. Give the percentage of each isotope.

5- Classify the following elements according to isotopes, isobars and isotones.

$^{16}_{8}\text{O}$, $^{14}_{7}\text{N}$, $^{12}_{6}\text{C}$, $^{12}_{5}\text{B}$, $^{13}_{6}\text{C}$, $^{15}_{8}\text{O}$, $^{13}_{7}\text{N}$, $^{17}_{8}\text{O}$, $^{19}_{9}\text{F}$, $^{18}_{9}\text{F}$, $^{15}_{7}\text{N}$

Exercise n°13*

What is the chemical symbol for the element whose isotope nucleus contains 18 protons and 22 neutrons?

Exercise n° 14***

The mass of copper in the Statue of Liberty in New York is 2.5×10^5 kg. What is the total mass of the electrons in this statue?

Exercise n°15**

Calculate the mass of nickel contained in 2.5 g of nickel sulphate hexahydrate. NiSO4.6H2O

Tutorial 1 Solutions

Exercise n°1

a) 1 mole (Zn) : 65.37 g \longrightarrow N atoms

$$x \text{ (g)} \longrightarrow 3.62 \times 10^{24} \text{ atoms}$$

La masse du zinc :

$$x = \frac{65.37 \times 3.62 \times 10^{24}}{6.023 \times 10^{23}} = 392.89 \text{ g} \quad \text{The mass of zinc} = 392.89 \text{ g}$$

1 mole (H₂O) : 18 g \longrightarrow 6.023 × 10²³ molecules

$$x \text{ (g)} \longrightarrow 6.02 \times 10^{21} \text{ molecules}$$

La masse de H₂O :

$$y = \frac{18 \times 6.02 \times 10^{21}}{6.023 \times 10^{23}} = 0.179 \text{ g} \quad \text{The mass of H}_2\text{O} = 0.179 \text{ g}$$

b) Number of moles of glucose: M(C₆H₁₂O₆) = 6 × 12 + 12 × 1 + 6 × 16 = 180 g

1 mole (glucose) \longrightarrow 180 g

$$x \text{ mole} \longrightarrow 21.6 \text{ g}$$

$$x = \frac{21.6}{180} = 0.12 \text{ moles}$$

c) The atomic mass of Fe = 56 g, which is the mass of one mole of Fe. The mass of one atom of Fe is therefore 56 amu, and the mass of the iron atom in grams is:

$$56 \times 1.66 \times 10^{-24} = 9.29 \times 10^{-23} \text{ g}$$

[note that : 1 amu = 1.66 × 10⁻²⁴ g = 1.66 × 10⁻²⁷ kg et 1 amu = $\frac{1}{N}$ g]

d) ${}_{4}^{9}Be$: $\begin{cases} A = 9 \\ Z = 4 \end{cases}$ therefore $\begin{cases} \text{protons} = 4 = e^- \\ \text{neutrons} = A - P = 5 \end{cases}$

${}_{13}^{27}Al^{3+}$: aluminium has lost 3e⁻ therefore : protons = 13, e⁻ = 10, neutrons = 27 - 13 = 14

${}_{16}^{32}S^{2-}$: sulphur has won 2e⁻ therefore : $\begin{cases} \text{protons} = 16 \\ e^- = 19 \end{cases}$, neutrons = 32 - 16 = 16

e) $^{27}_{13}Al$ (nucleus) : *the mass of the nucleus* = $A = 27$ amu = $27 \times 1.66 \times 10^{-27}$ kg = 4.482×10^{-26} kg

The relationship of the volume of the nuclei: $V = \frac{4}{3} \pi R^3$

The radius : $R = R_0 \cdot A^{1/3}$ [$R_0 = \sqrt{2}$ fermis = $\sqrt{2} \times 10^{-15}$ m]

$$R = 1.414 \times 10^{-15} (27)^{1/3} \text{ Therefore } R = 4.2419 \times 10^{-15} \text{ m}$$

Volume of the nucleus: $V = \frac{4}{3} \pi R^3 = \frac{4}{3} \pi (4.2419 \times 10^{-15})^3 \text{ Therefore } V = 3.21 \times 10^{-43} \text{ m}^3$

The density of the nucleus: $\rho = \frac{m}{V} = \frac{4.482 \times 10^{-26}}{3.21 \times 10^{-43}}$ Therefore

$$\begin{cases} \rho = 1.39 \times 10^{17} \text{ kg/m}^3 \\ \rho = 1.39 \times 10^{14} \text{ g/cm}^3 \end{cases}$$

That is to say, the nuclei are microscopic; indeed, a nucleus with a volume of 1 cm³ contains a mass of 1.39×10^{14} g.

Exercise n°2

Nucleus $^{10}_{X}Z$: $A = 10$, we are looking for the number of electrons: Z

$$a = 8.88693 \times 10^{-13} \text{ joules/nucleons and } m_{\text{exp}} = 10.020166 \text{ amu}$$

$$a = \frac{\Delta E}{A} \text{ (Mev/nucleons)} \Rightarrow \Delta E = a \times A$$

$$\text{We have : } 1 \text{ eV} \longrightarrow 1.6 \times 10^{-19} \text{ joules}$$

$$x \longrightarrow 8.88693 \times 10^{-13} \text{ Joules}$$

$$\text{Therefore } x = a = 5.55 \times 10^6 \text{ ev} \quad a = 5.55 \text{ Mev/nucleons} \quad \text{So : } \Delta E = a \times A = 5.55 \times 10$$

The binding energy $\Delta E = 55.5 \text{ Mev}$ further more we have : $\Delta E(\text{Mev}) = \Delta m \text{ (amu)} \times 931$

Therefore *The mass defect* $\Delta m = 0.059613 \text{ amu}$

$$\Delta m = \text{theoretical mass} - \text{experimental mass} = [Z \text{mp} + (A-Z)\text{mn}] - \text{exp m}$$

$$\Delta m + \text{exp m} = Z \text{ (mp - mn)} + A \text{ mn}$$

$$\frac{\Delta m + \text{exp m} - A \text{ mn}}{mp - mn} = Z$$

$$Z = \frac{0.059613 + 10.020166 - 10(1.008665)}{1.007278 - 1.008665} \quad \text{Therefore:}$$

$Z = 4.95 \Rightarrow Z = 5$ This is the element Boron.

Exercise n°3

We have the isotopes $^{12}_6C$ (98.89 %) and $^{13}_6C$

$\bar{M} = 12.011$ g, we are looking for the atomic mass of ^{13}C

$$\bar{M} = \frac{x_1 m_1 + x_2 m_2}{100} \quad \text{with } m_1 = 12, x_1 = 98.89\%, m_2 = ? \text{ et } x_2 = 100 - 98.89 = 1.11\%$$

$$\frac{\bar{M} \times 100 - x_1 m_1}{x_2} = m_2$$

The isotope mass ^{13}C :

$$m_2 = \frac{12.011 \times 100 - (98.89 \times 12)}{1.11} = 12.99 \cong 13$$

Exercise n°4

1) *The number of moles of CuO :*

1 mole $\rightarrow 63.54 + 16 = 79.54$ g

$$x \rightarrow 1.89 \text{ moles} \quad \text{therefore } x = \frac{n}{M} = 0.019 \text{ moles of CuO}$$

The number of molecules of CuO :

1 mole de CuO $\rightarrow N$ molecules

$$0.019 \text{ moles} \rightarrow y \quad \text{therefore } y = 1.14 \cdot 10^{22} \text{ molecules de CuO}$$

The number of copper and oxygen atoms:

1 molecule of CuO \rightarrow 1 atom of Cu et 1 atom of oxygen

$1.14 \cdot 10^{22}$ molecules $\rightarrow 1.14 \cdot 10^{22}$ atoms of Cu and $1.14 \cdot 10^{22}$ atoms of oxygen

2) *The mass of a calcium atom in grams:*

The atomic mass of calcium = 40 g, the mass of a Ca atom will be 40 amu, therefore the mass of a calcium atom in grams is : $40 \times 1.66 \cdot 10^{-24} = 6.64 \cdot 10^{-24}$ g

3)

Element	Protons	Electrons	Neutrons
$^{40}_{20}Ca$	20	20	20
$^{40}_{20}Ca^{2+}$	20	18	20
$^{35}_{17}Cl$	17	17	18
$^{35}_{17}Cl^-$	17	18	18

It should be noted that $\frac{A}{Z}X$: $Z = \text{protons} = \text{electrons}$ $A - Z = \text{Neutrons}$

Formation d'un cation : $X \longrightarrow X^+ + 1e^- \text{ Cation}$

Formation of an anion : $X + 1e^- \longrightarrow X^- \text{ Anion}$

4) ^{24}Mg : mass of the nucleus Mg = 24 amu

Mass of the nucleus Mg = $24 \times 1.66 \times 10^{-27}$

Mass of the nucleus Mg = $3.984 \times 10^{-26} \text{ kg}$

Volume of the nucleus: nucleus = sphere : $V = \frac{4}{3} \pi R^3$

$R = R_0 A^{1/3} = 1.414 \times 10^{-15} (24)^{1/3}$

$R = 4.078 \times 10^{-15} \text{ m} \Rightarrow V = 2.84 \times 10^{-43} \text{ m}^3$

Volumetric mass of the nucleus: $\rho = \frac{m}{V} = \frac{3.984 \times 10^{-26}}{2.84 \times 10^{-43}}$

Therefore :

$\rho = 1.40 \times 10^{17} \text{ kg/m}^3$

$\rho = 1.40 \times 10^{20} \text{ g/cm}^3$

$\rho = 1.40 \times 10^{14} \text{ g/cm}^3$

It's a huge mass in a small volume.

Exercise n°5

The nucleus of nitrogen : $^{14}_7N$

1) **The theoretical mass:** $m_{th} = Z m_p + (A - Z) m_n$

$m_{th} = 7 \times 1.007277 + 7 \times 1.008665 = 14.111594 \text{ amu}$; Therefore :

$m_{th} = 14.111594 \text{ amu}$

theoretical mass > real mass

2) **The cohesion energy ΔE :**

$$\Delta E = \Delta m c^2$$

The mass defect Δm : $\Delta m = thm - realm$

$\Delta m = 0.104079 \text{ amu}$

We remind you that: $\Delta E \text{ (joules)} : \Delta E = \Delta m \cdot c^2 = \Delta m \text{ (amu)} \times 14.94 \times 10^{-11}$
(Joules) (kg) (m/s)

$\Delta E = 0.104079 \times 14.94 \times 10^{-11} = 1.55 \times 10^{-11} \text{ joules}$ therefore $\Delta E = 1.55 \times 10^{-11} \text{ joules}$

$\Delta E(\text{Mev}) = \Delta m \text{ (amu)} \times 93 = 96.89 \text{ Mev}$ therefore $\Delta E(\text{MeV}) = 96.89 \text{ Mev}$

3) The binding energy per nucleon:

$$a = \frac{\Delta E}{A} = \frac{96.89}{14} = 6.92 \text{ MeV/nucleons}$$

Exercise n°6

$^{28}_{14}Si$, $^{29}_{14}Si$, $^{30}_{14}Si$ / $\bar{M} = 28.085 \text{ g}$

1) The most abundant isotope is $^{28}_{14}Si$ because the atomic molar mass of Si is 28.085 g.

2) The abundance of the other isotopes

The abundance de $^{29}_{14}Si \rightarrow x_2$ % $^{28}_{14}Si = 92.23\% (x_1)$

The abundance $de^{30}_{14}Si \rightarrow x_3$

$$\bar{M} = x_1 m_1 + x_2 m_2 + x_3 m_3 / 100$$

$$(1) 28.085 = 92.23 (28) + x_2 \times 29 + x_3 \times 30 / 100$$

Moreover, we have : $92.23 + x_2 + x_3 = 100$

$$x_2 + x_3 = 100 - 92.23 = 7.77 \text{ therefore}$$

$$x_2 = 7.77 - x_3$$

From the relationship (1) : $2808.5 = 2582.44 + 29 (7.77 - x_3) + 30 x_3$

Finally : $x_3 = 0.73\%$ et $x_2 = 7.77 - 0.73$ therefore

$$x_2 = 7.04\%$$

Exercise n°7

a) **The number of moles of $MgSO_4$** : 1 mole $MgSO_4 \rightarrow 120 \text{ g}$

$$x \rightarrow 40.1 \text{ g}$$

Therefore $x = 0.33$ moles

b) The mass of 3.62×10^{24} atoms of Zn :

1 mole de Zn \longrightarrow 65.37 g \longrightarrow N atoms

x (g) \longrightarrow 3.62×10^{24} atoms

$$x = \frac{65.37 \times 3.62 \times 10^{24}}{6.023 \times 10^{23}} = 39.89 \text{ g}$$

c) The number of moles of CO_2 : We have : 1 mole $\text{CO}_2 \longrightarrow$ N molecules of CO_2

0.6 moles \longrightarrow X molecules

$$X = 0.6 \times 6.023 \times 10^{23} = 3.61 \times 10^{23} \text{ molecules of } \text{CO}_2$$

* 1 molecule of $\text{CO}_2 \longrightarrow$ 2 atoms of oxygen

3.61×10^{23} molecules of $\text{CO}_2 \longrightarrow$ X_1 atoms of oxygen

$$X_1 = 2 \times 3.61 \times 10^{23} = 7.22 \times 10^{23} \text{ atoms of oxygen}$$

* 1 molecule of $\text{CO}_2 \longrightarrow$ 1 atom of carbon

3.61×10^{23} molecules of $\text{CO}_2 \longrightarrow$ X_2 atoms of carbon

$$X_2 = 3.61 \times 10^{23} \text{ atoms of carbon.}$$

d) The molecular mass of $\text{NaCl} = 58.5$ g ; therefore the mass of a molecule of NaCl will be : 58.5 amu

We know that 1 amu \longrightarrow 1.66×10^{-24} g

58.5 amu \longrightarrow y

$$y = 9.7 \times 10^{-23} \text{ g (mass of a molecule of NaCl)}$$

e) $^{24}_{12}\text{Mg}$: Z = 12 = p = e⁻ number of neutrons = 12

$^{238}_{92}\text{U}$: Z = 92 = p = e⁻ neutrons = 146

$^{40}_{20}\text{Ca}^{2+}$: p = 20 number d'e⁻ = 18

$^{35}_{17}\text{Cl}^-$: p = 17 e⁻ = 18 A + 1 e⁻ \longrightarrow A⁻

B \longrightarrow B⁺ + 1 e⁻

Exercise n°8

Simple pure substance	Compound pure substance	Homogeneous substance	Heterogeneous substance
F_2	H_2O	Air	Sand
Diamond	NaOH	CH_3COOH Solution	Blood
Carbon	CH_3COOH	Mineral water, Milk	

Exercise n°9

$$1) \text{ 1 mole de } \text{MgSO}_4 \longrightarrow 120 \text{ g}$$

$$x \longrightarrow 40.1 \text{ g}$$

Therefore $x = 0.33$ moles (The number of moles of MgSO_4)

$$2) \text{ 1 mole de } \text{CaCO}_3 \longrightarrow 100 \text{ g}$$

$$0.4 \text{ moles} \longrightarrow x \text{ (g)}$$

Therefore $x = 40 \text{ g}$ (mass of CaCO_3)

$$3) \text{ 1 mole of } \text{Zn} \longrightarrow \text{N atoms}$$

$$x \longrightarrow 3.61 \cdot 10^{24} \text{ atoms}$$

Therefore $x = 6,01$ moles (number of mole of Zn)

$$1 \text{ mole of } \text{Zn} \longrightarrow 65.37 \text{ g}$$

$$6.01 \text{ moles} \longrightarrow y$$

Therefore $y = 392,89 \text{ g}$ (masse of zinc)

$$1 \text{ mole of } \text{H}_2\text{O} \longrightarrow \text{N molecules} \longrightarrow 18 \text{ g}$$

$$6.02 \cdot 10^{23} \text{ molecules} \longrightarrow x$$

Therefore $x = 0.18 \text{ g}$ (mass of H_2O)

$$4) \text{ 1 mole of } \text{CO}_2 \longrightarrow 44 \text{ g}$$

$$0.6 \text{ moles} \longrightarrow x_1$$

$$x_1 = 26.4 \text{ g}$$
 (mass of CO_2)

$$1 \text{ mole of } \text{CO}_2 \longrightarrow \text{N molecules of } \text{CO}_2$$

$$0.6 \text{ moles} \longrightarrow x_2$$

$$x_2 = 3.61 \cdot 10^{23} \text{ molecules of } \text{CO}_2$$

$$1 \text{ molecule of } \text{CO}_2 \longrightarrow 1 \text{ atom carbon}$$

$$3.61 \cdot 10^{23} \text{ molecules} \longrightarrow x_3 = 3.61 \cdot 10^{23} \text{ atoms of carbon}$$

1 molecule of $\text{CO}_2 \longrightarrow 2$ atoms of oxygen

$3.61 \cdot 10^{21}$ molecules $\longrightarrow x = 7.22 \cdot 10^{23}$ atoms of oxygen

Exercise n°10

1 mole of Cu \longrightarrow N atoms \longrightarrow 63 g

1 atom \longrightarrow x

The mass of the atom of Cu is : $x = \frac{63}{N}$ g = 63 amu

$x = 63$ amu et 1 amu = $1.66 \cdot 10^{-24}$ g

Therefore The mass of the atom of Cu in [g] : $63 \times 1.66 \cdot 10^{-24} = 1.045 \cdot 10^{-22}$ g

The molecular mass of NaCl is 58.5 g, therefore the mass of one molecule of NaCl is 58.5 amu and it is:

$58.5 \times 1.66 \cdot 10^{-24} = 9.71 \cdot 10^{-23}$ g

Exercise n°11

We have 1 mole of hemoglobin \longrightarrow N molecule of hemoglobin \longrightarrow 18000 g
 x molecules of hemoglobin \longrightarrow $0.15 \cdot 10^3$ g

$x = 5.019 \cdot 10^{15}$ molecules of hemoglobin

x mole of hemoglobin in 1 mm³ of blood and in $5 \cdot 10^6$ of red blood cells

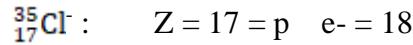
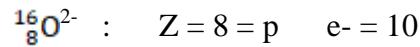
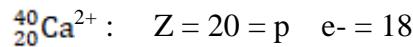
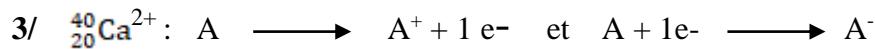
Therefore : $5 \cdot 10^6$ red blood cells $\longrightarrow 5.019 \cdot 10^{15}$ molecules of hemoglobin

1 red blood cell \longrightarrow y

$y = 1.0038 \cdot 10^9$ molecules of hemoglobin.

In 1 red blood cell, we have 1 billion hemoglobin molecules..

Exercise n°12





1) Z = atomic number = number of protons = number of electrons, Therefore the number of protons in an atom with atomic number Z is Z protons

2) $^{24}_{12}\text{Mg}$: $Z = 12 = p = e^-$

$A = 24 = N + Z \iff N = A - Z = 24 - 12$, Therefore : $N = 12$ neutrons.

$^{238}_{92}\text{U}$: $Z = 92 = p = e^-$

$A = 238$ et $N = 238 - 92 = 146$ neutrons

4) $\overline{M} = \sum \frac{ximi}{100} \sum xi = 100$

$$12,011 = \frac{12 \ x_1 + 13.0034 \ x_2}{100}$$

$$x_1 + x_2 = 100 \quad x_1 = 100 - x_2$$

$$12.011 \cdot 100 = 12(100 - x_2) + 13.0034 x_2$$

$$120.1 = 1200 + x_2(13.0034 - 12) \quad \text{Therefore :}$$

$$x_2 = \frac{1.1}{1.0034} \begin{cases} x_2 = 1.096 \% \\ x_1 = 98.904 \% \end{cases} \quad \text{Therefore } {}^{12}\text{C} (98.904\%) \text{ et } {}^{13}\text{C} (1.096\%)$$

5) Reminder:

Isotopes: are elements that have the same Z and different A

Isobars: are elements that have the same A and different Z different

Isotones: are elements that have the same number of neutrons

<i>Isotopes</i>	<i>Isobars</i>	<i>Isotones</i>
${}_{8}^{15}\text{O} {}_{8}^{16}\text{O} {}_{8}^{17}\text{O}$	${}_{8}^{15}\text{O} {}_{7}^{15}\text{N}$	${}_{8}^{15}\text{O} {}_{7}^{14}\text{N} {}_{5}^{12}\text{B}$ (n = 7)
${}_{6}^{12}\text{C} {}_{6}^{13}\text{C}$	${}_{6}^{12}\text{C} {}_{5}^{12}\text{B}$	
${}_{7}^{15}\text{N} {}_{7}^{14}\text{N} {}_{7}^{13}\text{N}$	${}_{8}^{17}\text{O} {}_{9}^{17}\text{F}$	${}_{8}^{16}\text{O} {}_{9}^{17}\text{F} {}_{7}^{15}\text{N}$ (n = 8)
${}_{9}^{17}\text{F} {}_{9}^{18}\text{F}$		${}_{8}^{17}\text{O} {}_{9}^{18}\text{F}$ (n = 9)
		${}_{6}^{12}\text{C} {}_{7}^{13}\text{N}$ (n = 6)

Exercise n°13

The element for which the atomic number Z = 18 is argon. The chemical symbol associated with the atomic number and the mass number A = 18 + 22 = 40 est ${}_{18}^{40}\text{Ar}$.

Exercise n°14

The atomic mass of copper is 63.5 g and its atomic number is 29.

The number of copper atoms corresponding to the mass of the Statue of Liberty, that is $(2.5 \cdot 10^5 \text{ kg})$ ($2.5 \cdot 10^8 \text{ g}$) will be :

$$2.5 \cdot 10^8 \text{ g} \cdot \frac{6.022 \cdot 10^{23} \text{ atoms mol}^{-1}}{63.5 \text{ g mol}^{-1}} = 2.37 \cdot 10^{30} \text{ atoms}$$

Each copper atom contains 29 electrons, therefore the number of electrons present in the Statue of Liberty is :

$$2.37 \cdot 10^{30} \text{ atoms} \cdot 29 \text{ electrons} = 6.87 \cdot 10^{31} \text{ electrons}$$

Since the mass of an electron is $9.109 \cdot 10^{-28} \text{ g}$, the total mass of the electrons in the Statue of Liberty will therefore be :

$$6.87 \cdot 10^{31} \cdot 9.109 \cdot 10^{-28} = 6.26 \cdot 10^4 \text{ g} \text{ ou } 62.6 \text{ kg}$$

Exercise n°15

The molar mass of $\text{NiSO}_4 \cdot 6\text{H}_2\text{O}$:

$$M = 58.693 + 32.066 + 4 \cdot 15.999 + 6 \cdot 18.015 = 262.85 \text{ g mol}^{-1}$$

The number of moles of Ni in 2.5 g of $\text{NiSO}_4 \cdot 6\text{H}_2\text{O}$:

$$n_{\text{Ni}} = \frac{2.5}{262.85 \text{ g mol}^{-1}} = 9.51 \cdot 10^{-3} \text{ moles}$$

The mass of Nickel is :

$$m_{\text{Ni}} = 9.51 \cdot 10^{-3} \text{ mol} \cdot 58.69 \text{ g mol}^{-1} = 0.558 \text{ g}$$

Tutorial 2

(The nucleus and radiation)

Exercise n°1*

The wavelength λ of sodium vapour is given as 5900 \AA° , the speed of light $c = 3 \cdot 10^8 \text{ m/s}$ and Planck's constant $h = 6.62 \cdot 10^{-34} \text{ J S}$.

Calculate :

- a)** The associated wave number in m^{-1} .
- b)** The frequency of the wave.
- c)** The energy of the emitted photon.

Exercise n°2***

- a)** If a hydrogen atom in its ground state absorbs a photon with a wavelength λ_1 equal to 972.8 \AA° and then emits a photon with a wavelength λ_2 equal to 18790 \AA° , what energy level will the electron be in after this emission?
- b)** Represent the two transitions corresponding to these two lines on an energy diagram.
- c)** Calculate the ionisation energy from the ground state. Given: $R_H = 1,1 \cdot 10^7 \text{ m}^{-1}$

Exercise n°3***

Let $\lambda = 57.3 \text{ \AA}^\circ$ be the shortest wavelength in the spectrum of a Be^{3+} hydrogenoid ($Z = 4$).

- a)** What is this transition and calculate the corresponding energy.
- b)** Calculate the wavelength relative to the same transition for a hydrogen atom and deduce its energy.
- c)** Plot on an energy diagram:
 - (a)** The 3rd Lyman absorption line.
 - (b)** The 1st Paschen emission line.
 - (c)** The 3rd Balmer emission line.

Exercise n°4 **

The electron of the hydrogen atom in its ground state is excited with energies equal to 10.20, 12.08 and 12.74 eV.

- 1) Determine the energies of the electron in the ground state at the different levels.
- 2) Specify the diagram and the associated energy. Which series of absorptions is this?
- 3) What is the wavelength of each transition?

Data : $c = 3 \times 10^8 \text{ m/s}$ $h = 6.62 \times 10^{-34} \text{ J s}$. $E_i = 13.6 \text{ eV}$

Exercise n°5*

Given the Li^{+2} 2 ion, calculate the third ionisation energy of lithium in joules and eV, and calculate the wavelength and frequency of the line corresponding to the transition $n=4 \rightarrow n=1$.

Exercise n°6 ***

- 1- The electron of a hydrogen atom initially at level $n=3$ emits radiation with a wavelength $\lambda = 1027 \text{ \AA}$. At what level is the electron?
- 2- The absorption of a photon with wavelength $\lambda = 64 \text{ \AA}$ by a hydrogenoid X in its ground state releases an electron with kinetic energy equal to 71 eV. Determine the atomic number Z of this hydrogenoid.

Exercise n°7*

Consider electromagnetic radiation with a wavelength of 5000 \AA . Calculate the energy carried by this radiation in joules and kilocalories, as well as the corresponding wave number.

Given: $1 \text{ Cal} = 4.18 \text{ joules}$

Exercise n°8 *

Bohr's theory is applied to the electron of the hydrogen atom, which is characterised by $n = 3$. Calculate:

- 1- The radius of this orbit in \AA .
- 2- The energy of the electron in eV.
- 3- The ionisation energy from $n = 3$.
- 4- The wavelength in \AA corresponding to transitions $3 \rightarrow 4$ and $4 \rightarrow 3$.
- 5- Plot these transitions on an energy diagram.

Exercise n°9 ***

- 1- Consider an excited hydrogen atom that returns to its ground state by emitting a line with a wavelength of 1216 \AA . ($R_H = 1.1 \times 10^7 \text{ m}^{-1}$).

What are the quantum numbers n_1 and n_2 that characterise this transition?

2- One of the emission lines of the hydrogen atom has a wavelength $\lambda = 4850 \text{ \AA}^\circ$. Give the transitions that correspond to this series.

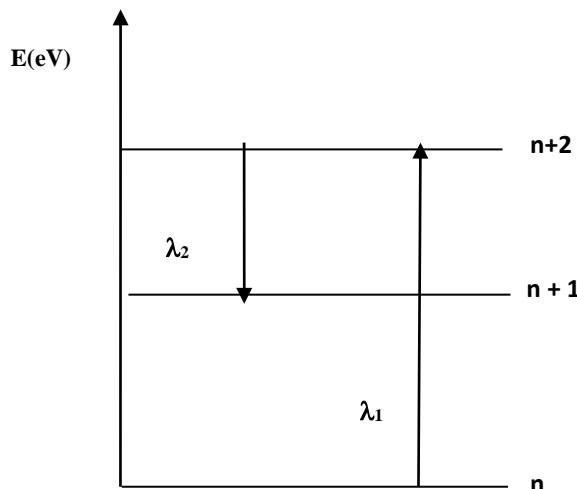
3- The wavelength of the first line of a spectral series of the hydrogen atom is $\lambda = 18700 \text{ \AA}^\circ$.

a- Give the name of this series.

b- Calculate the energy of the photon corresponding to the second line of this series.

c- Calculate the energy of the photon corresponding to the last line of this series. What is this type of transition called?

Exercise n°10 **


a) Let the hydrogen atom initially in the ground state, it absorbs a photon of wavelength 900 \AA° . Show that the atom is ionized.

b) An excited hydrogen atom returns to its ground state by emitting a line with a wavelength of 1216 \AA° . Determine the levels n_1 et n_2 that characterize this transition, and indicate in which region of the electromagnetic spectrum this line is located. ($R_H = 1.1 \cdot 10^7 \text{ m}^{-1}$)

Exercise n° 11***

Let the transitions of the electron of a hydrogen atom be represented on the energy diagram. Knowing that $(n+1)$ corresponds to the fundamental state of the series that is in the infrared (IR): (1) calculate the states n , $n+1$, $n+2$.

(2) Find the wavelengths λ_1 et λ_2 in (\AA°) .

Exercise n° 12**

Represent the following transitions on an energy diagram:

- 1) 3rd absorption line of Balmer.
- 2) 2nd emission line of Lyman.
- 3) 2nd absorption line of Paschen.
- 4) 1st emission line of Brackett.

Exercise n°13*

The hemoglobin-CO complex absorbs radiation of $1\ 953\ \text{cm}^{-1}$. Calculate the wavelength of the radiation (in nm), its frequency (in Hz), and its energy (en $\text{kJ} \cdot \text{mol}^{-1}$).

Exercise n°14*

The barium atom emits light with a frequency of $5.41 \times 10^{14}\ \text{Hz}$. Is this light part of the visible spectrum?

Exercise n°15**

The energy required to remove the 3s electron from sodium is 5.14 eV. Calculate the wavelength of radiation that ionises sodium.

Tutorial 2 Solutions

Exercise n°1

$$\lambda = 5900 \text{ \AA} \quad \lambda = 59 \cdot 10^{-8} \text{ m} \quad / \quad 1 \text{ \AA} = 10^{-1} \text{ m}$$

a) The wave number: $\bar{v} = \frac{1}{\lambda} = \frac{1}{59 \cdot 10^{-8}}$, therefore $\bar{v} = 1694915 \text{ m}^{-1}$

b) The frequency : $v = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{59 \cdot 10^{-8}}$, therefore $v = 5.08 \cdot 10^{14} \text{ s}^{-1}$ (Hz)

c) the energy of the emitted photon:

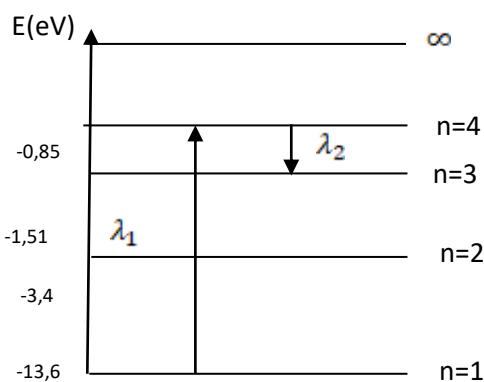
$$\Delta E = h v = 6.62 \cdot 10^{-34} \text{ (J.s)} \cdot 5.08 \cdot 10^{14}, \text{ Therefore : } \Delta E = 3.36 \cdot 10^{-19} \text{ joules}$$

Exercise n°2

a) Ground state : $n_1 = 1 \quad \lambda_1 = 972,8 \text{ \AA}$

$$\bar{v} = \frac{1}{\lambda_1} = \text{Rh} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{avec } (n_2 > n_1)$$

Absorption de $n_1 = 1 \rightarrow n_2$, On a : $\frac{1}{\lambda_1} = \frac{1}{972.8 \cdot 10^{-10}} = 1.1 \cdot 10^7 \left(\frac{1}{1^2} - \frac{1}{n_2^2} \right)$


We obtain $n_2 = 4$ therefore an absorbtion of $n_1 = 1 \rightarrow n_2 = 4$

For $\lambda_2 = 18790 \text{ \AA}$ we have an emission of $n_2 = 4 \rightarrow n'_1$

replaces in Balmer's relation: $\frac{1}{\lambda_2} = \text{Rh} \left(\frac{1}{n'_1^2} - \frac{1}{4^2} \right) \quad \text{avec } n'_2 > n'_1$

Therefore de $n'_1 = 3$, we have an emission of $n_2 = 4 \rightarrow n'_1 = 3$

Representation

c) **Ionisation energy:** $E_i = E_\infty - E_n$ for the level $n=1$ we have :

$$Ei = -E_1 = -(-13.6) \text{ eV}$$

Therefore $Ei = 13.6 \text{ eV}$ ($Ei > 0$ because it is an absorption)

Exercise n°3

1) λ corresponds to the shortest wavelength, therefore it is the limiting line that corresponds to the transition : $n_1 \longrightarrow \infty$

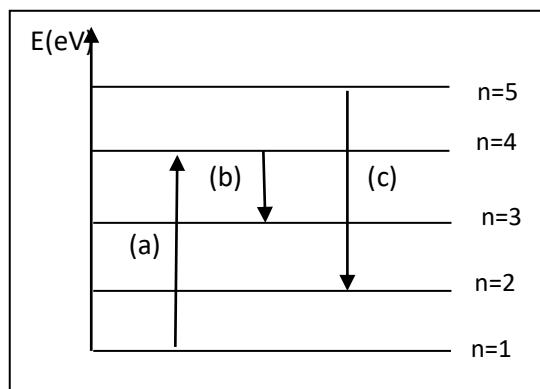
We have the hydrogenate of beryllium. ${}^4Be^{3+}$, we apply Balmer's relation:

$$\frac{1}{\lambda} = R_h Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{with } n_2 > n_1$$

$$\frac{1}{57.3 \cdot 10^{-10}} = 1.1 \cdot 10^7 \left(\frac{1}{n_1^2} - 0 \right) \iff n_1 = 1$$

(The transition: $n_1 = 1 \longrightarrow n_2 = \infty$), it's an ionisation.

The energy that corresponds to this transition: $Ei = E_\infty - E_1 = -(Z^2 E_1) \iff Ei = 217.6 \text{ eV}$


2) The wavelength corresponding to the same transition for the hydrogen atom:

$$\frac{1}{\lambda'} = R_h \left(\frac{1}{n_1^2} - 0 \right) \iff \frac{1}{\lambda'} = R_h \quad \lambda' = \frac{1}{R_h} = 9.09 \cdot 10^{-8} \text{ m} = 909 \text{ Å}$$

$$\lambda' = 909 \text{ Å}$$

This is ionisation energy. Therefore : $Ei = E_\infty - E_1$, $Ei = +13.6 \text{ eV}$

3)

(a) 3rd absorption line of Lyman.

(b) 1st emission line of Paschen.

(c) 3rd emission line of Balmer.

Exercise n°4

1) The energies of the electron at different levels:

$$\Delta E = E_{final} - E_{initial}$$

Fundamental state $\Rightarrow E_i = E_1 = -13.6 \text{ eV}$, Therefore : $E_{initial} = E_1 = -13.6 \text{ eV}$

The final energy will be: $E_f = \Delta E + E_i$

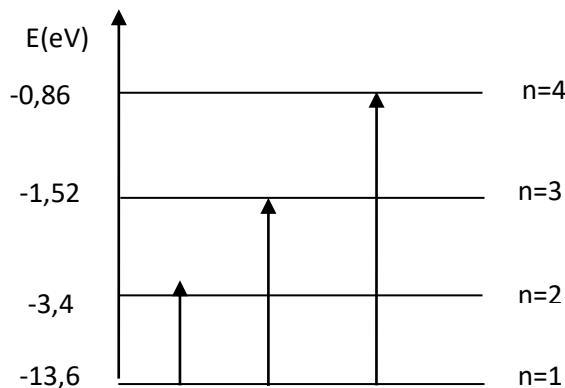
$$\Delta E_1 = 10.20 \text{ eV} \Rightarrow E_{f1} = 10.20 - 13.6 = -3.4 \text{ eV}$$

$$\Delta E_2 = 12.08 \text{ eV} \Rightarrow E_{f2} = 12.08 - 13.6 = -1.52 \text{ eV}$$

$$\Delta E_3 = 12.74 \text{ eV} \Rightarrow E_{f3} = 12.74 - 13.6 = -0.86 \text{ eV}$$

The levels (orbits) for each energy :

The energy of an electron in an orbit is: $E_n = E_1 / n^2$ ($E_1 = -13.6 \text{ eV}$)


The orbit $n = \sqrt{\frac{E_1}{E_n}}$ The orbits are :

$$n_1 = \sqrt{\frac{13.6}{3.4}} \Rightarrow n_1 = 2$$

$$n_2 = \sqrt{\frac{13.6}{1.52}} \Rightarrow n_2 = 3 \quad 1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ Joules}$$

$$n_3 = \sqrt{\frac{13.6}{0.86}} \Rightarrow n_3 = 4$$

2) The energy diagram

This is the Lyman absorption series.

3) Wavelength of each transition (Absorption)

We have $\Delta E = h v = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{\Delta E}$ or :

$$\bar{v} = \frac{1}{\lambda} = Rh \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad (n_2 > n_1)$$

$$\Delta E_1 \Rightarrow \lambda_1 = \frac{hc}{\Delta E_1} = \frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{10.20 \times 1.6 \cdot 10^{-19}}$$

$$\lambda_1 = 1.21 \cdot 10^{-17} \text{ m} = 1210 \cdot 10^{-10} \text{ m} = 1210 \text{ Å} \quad \lambda_1 = 1210 \text{ Å}^\bullet$$

$$\bar{v}_2 = \frac{1}{\lambda_2} = Rh (1.1 \cdot 10^{-7}) \left(\frac{1}{1^2} - \frac{1}{3^2} \right)$$

$$\lambda_2 = 10227272.73 \text{ m} = 1.022 \cdot 10^{-7} \text{ m} = 1022 \text{ Å} \quad \lambda_2 = 1022 \text{ Å}^\bullet$$

$$\bar{v}_3 = \frac{1}{\lambda_3} = 1.1 \cdot 10^{-7} \left(\frac{1}{1^2} - \frac{1}{4^2} \right) \Rightarrow \lambda_3 = 9696969.97 \text{ m}$$

$$\lambda_3 = 9696969.97 \text{ m} = 9.969 \cdot 10^{-6} \text{ m} = 969.6 \text{ Å} \quad \lambda_3 = 969.6 \text{ Å}^\bullet$$

Exercise n°5 :

The 3rd ionization energy of lithium : ${}^3\text{Li}^{2+}$ is the hydrogenoid of lithium

$\text{Li}^{2+} \longrightarrow \text{Li}^{3+} + 1 \text{ e}^-$ 3ème ionisation

$$E_i = E_\infty - E_n = -E_n = -\frac{Z^2 E'_1}{n^2}$$

0

$$E_i = -\frac{3^2 (-13.6)}{1} = 122.4 \text{ eV} \quad Ei = 122.4 \text{ eV}$$

We have $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ joules}$

Therefore : $E_i = 195.84 \cdot 10^{-19} \text{ joules}$

The wavelength and frequency of the line that corresponds to the transition $n=4 \rightarrow n=1$.

$$\frac{1}{\lambda} = Z^2 Rh \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ with } n_2 > n_1$$

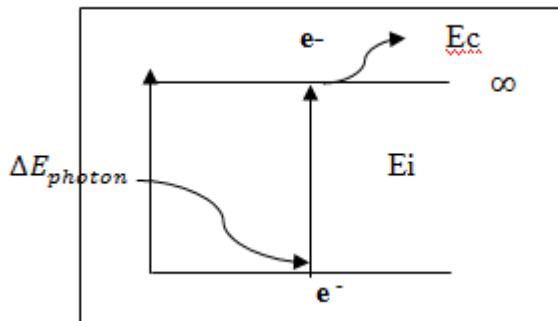
$$\frac{1}{\lambda} = 3^2 \cdot 1.1 \cdot 10^{-7} \left(\frac{1}{1^2} - \frac{1}{4^2} \right) \Rightarrow$$

$$\lambda = 1.086 \cdot 10^{-8} \text{ m} = 108.06 \cdot 10^{-10} \text{ m} = 108.06 \text{ Å} \quad \lambda = 108.06 \text{ Å}^\bullet$$

$$\text{The frequency : } \nu = \frac{c}{\lambda} = \frac{3 \cdot 10^8}{1.0806 \cdot 10^{-10}} = 2.77 \cdot 10^{16} \text{ s}^{-1} \text{ (Hz)}$$

$$\nu = 2.77 \cdot 10^{16} \text{ s}^{-1} \text{ (Hz)}$$

Exercise n°6


$\lambda = 1027 \text{ \AA}$ belongs to the Lyman series $\Rightarrow n_I = 1$

$$1) \frac{1}{\lambda} = R_h \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad (n_2 > n_1) \quad \text{Emission of } n_2 = 3 \longrightarrow n_1$$

$n_2 = 3$ we are looking for n_1 $\lambda = 1027 \text{ \AA}$

$$\frac{1}{1027 \cdot 10^{-10}} = 1.1 \cdot 10^{-7} \left(\frac{1}{n_1^2} - \frac{1}{9} \right) \iff n_1 = 1$$

2) An electron is released, therefore this is ionisation.

$$\text{On a ; } E_{\text{photon}} = E_{\text{ionisation}} + E_{\text{kinetic}}$$

$$E_{\text{ionisation}} = E_{\infty} - E_1 \quad X : \text{hydrogenoid}$$

$$E_i = -E_1 = -Z^2 \frac{E_1}{1^2} = -Z^2 \frac{(-13.6)}{1^2} \quad \text{Therefore } E_i = Z^2 13.6$$

Furthermore, we have: $E_{\text{ionisation}} = E_{\text{photon}} - E_{\text{cinétique}}$ relation (1)

$$E_{\text{photon}} = h \nu = \frac{hc}{\lambda} = \frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{64 \cdot 10^{-10}} = 3.103 \cdot 10^{-17} \text{ joules and we have :}$$

$$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ joules} \quad \text{Therefore : } E_{\text{photon}} = 193.94 \text{ eV}$$

We replace in reaction (1): $E_{\text{ionisation}} = 193.94 - 71 = 122.94 \text{ eV} = 13.6 Z^2$,

$$Z^2 = 9.039 \iff Z = 3 \text{ (lithium)}$$

Exercise n°7

The energy carried by radiation is :

$$E \text{ or } \Delta E = h \nu = \frac{hc}{\lambda} = \frac{6.62 \cdot 10^{-34} \times 3 \cdot 10^8}{5000 \cdot 10^{-10}}$$

$$E = 3.972 \cdot 10^{-19} \text{ joules}$$

In electron - Volt : 1 eV \longrightarrow $1.6 \cdot 10^{-19}$ joules

$$x \text{ eV} \longrightarrow E \text{ (joules)}$$

The energy of radiation in (eV) : $x = E \text{ (eV)} = 2.4825 \text{ eV}$

The wave number: $\bar{\nu} = \frac{1}{\lambda}$ Therefore $\bar{\nu} = 2 \cdot 10 \text{ A}^{-1} = 2 \cdot 10^6 \text{ m}^{-1}$

In calories : 1 cal \longrightarrow 4.18 joules

$$y \longrightarrow 3.972 \cdot 10^{-19} \text{ joules}$$

The energy of radiation in calories $= E \text{ (cal)} = 9.502 \cdot 10^{-20} \text{ cal} = 9.502 \cdot 10^{-23} \text{ Kcal}$

Exercise n°8

For the orbit $n = 3$

1) The radius : $r_n = r_0 n^2 = 0.53 \cdot 9 = 4.77 \text{ A}^{\circ}$ $r_3 = 4.77 \text{ A}^{\bullet}$

2) Orbital energy : $E_n = \frac{E_1}{n^2} = - \frac{13.6}{9} = - 1.51 \text{ eV}$ $E_3 = - 1.51 \text{ eV}$

3) Ionisation energy : $E_i = E_{\infty} - E_n$

$$\cancel{E_{\infty}} - E_3 = - E_3 = + 1.51 \text{ eV} \quad \text{Therefore} \quad E_{\text{ionisation}} = 1.51 \text{ eV}$$

4) We are looking for the wavelength (A°) that corresponds to the transitions $3 \longrightarrow 4$

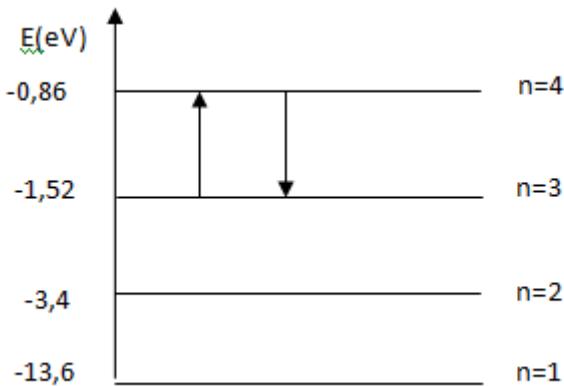
and $4 \longrightarrow 3$

$$\lambda_{3-4} = \lambda_{4-3}$$

Either $\Delta E_{3 \rightarrow 4} = h \nu = \frac{hc}{\lambda}$ therefore :

$$\lambda_{3-4} = \frac{hc}{\Delta E}$$

Or we apply Balmer's relation


$$\frac{1}{\lambda} = Rh \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{with} \quad n_2 > n_1$$

$$\frac{1}{\lambda_{3 \rightarrow 4}} = 1.1 \cdot 10^7 \left(\frac{1}{9} - \frac{1}{16} \right) \quad \text{therefore} \quad \lambda_{3 \rightarrow 4} = 1.8701 \cdot 10^{-6} \text{ m}$$

$$\lambda_{3 \rightarrow 4} = 18701 \cdot 10^{-10} \text{ m} = 18701 \text{ Å}^\circ$$

The ground state $n = 3$ corresponds to **Paschen's series**, therefore this line actually belongs to this series [18750 $\geq \lambda \geq$ 10940] and is found in IR.

5) The energy diagram

Exercise n°9

1) The electron returns to its ground state, therefore $n_1 = 1$, we are looking for n_2 .

$\lambda = 1216 \text{ Å}^\circ \Rightarrow$ Lyman's serie and therefore $n_1 = 1$

We apply Balmer's relation:

$$\bar{v} = \frac{1}{\lambda} = Rh \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{with} \quad n_2 > n_1$$

$$\frac{1}{\lambda} = 1.1 \cdot 10^7 \left(1 - \frac{1}{n_2^2} \right) \quad \text{therefore} \quad \frac{1}{\lambda Rh} - \frac{1}{n_2^2} = -\frac{1}{n_2^2}$$

$$\frac{1}{n_2^2} = 1 - \frac{1}{\lambda Rh}$$

$$\frac{1}{n_2^2} = 1 - \frac{1}{1216 \cdot 10^{-10} \cdot 1.1 \cdot 10^7} \quad \text{therefore} \quad n_2 = 1.99 \Rightarrow n_2 = 2$$

2) $\lambda = 4850 \text{ A}^\circ$ we are looking for n_1 and n_2

$$\frac{1}{\lambda} = \frac{1}{\lambda} = Rh \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \text{and} \quad n_2 > n_1$$

$\lambda = 4850 \text{ A}^\circ$ it belongs to the Balmer series . $[6563 \geq \lambda \geq 3636]$ therefore $n_1 = 2$

we are looking for n_2 :

$$\frac{1}{\lambda} = \frac{1}{n_1^2} - \frac{1}{n_2^2} \Rightarrow \frac{1}{n_2^2} = \frac{1}{n_1^2} - \frac{1}{\lambda} Rh$$

$$\frac{1}{n_2^2} = \frac{1}{4} - \frac{1}{4850 \cdot 10^{-10} \cdot 1.1 \cdot 10^7} \quad \text{Therefore}$$

$$n_2^2 = 15.98 \Rightarrow n_2 = 3.99 \Rightarrow n_2 = 4$$

The emission of $n_2 = 4 \longrightarrow n_1 = 2$

3) a) $\lambda = 18700 \text{ A}^\circ$ this line belongs to **Paschen's series**. therefore $n_1 = 3$ (is located in IR)

b) The energy of the 2nd ray in this series corresponds to the transition. $n_1 = 3 \longrightarrow n_2 = 5$

$$\Delta E_{3 \rightarrow 5} = E_5 - E_3 = 0.966 \text{ eV}$$

c) The energy corresponding to the last line in this series is the ionisation energy. We have the transition of the electron de $n_1 = 3 \longrightarrow n_2 = \infty$

$$E_i = E_{\cancel{\infty}} - E_3 = - E_1 / n^2 = - (-13.6) / 3^2 \quad \text{therefore } E_i = + 1.51 \text{ eV}$$

Exercise n°10

a) Fundamental state $\Rightarrow n=1$ therefore the minimum energy required to ionise the atom of hydrogen will be : $E_i = E_{\cancel{\infty}} - E_1$ therefore $E_i = - (-13.6) \text{ eV} \quad E_i = + 13.6 \text{ eV}$
minimum energy 0

The energy absorbed by the hydrogen atom ($\lambda = 900 \text{ A}^\circ$) :

$$\Delta E = h\nu = \frac{hc}{\lambda} = \frac{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{900 \cdot 10^{-10}} = 2.2 \cdot 10^{-18} \text{ joules} \quad \Delta E_{\text{Absorbed}} = 2.2 \cdot 10^{-18} \text{ joules}$$

We have : $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ Joules}$, therefore

$$\begin{array}{rcl} 1 \text{ eV} & \longrightarrow & 1.6 \cdot 10^{-19} \text{ J} \\ E_{\text{Abs}}(\text{eV}) & \longrightarrow & E_{\text{Abs}}(2.2 \cdot 10^{-18} \text{ joules}) \end{array} \quad E_{\text{Abs}} = 13.75 \text{ eV}$$

$E_{Abs} > E_i$ therefore the hydrogen atom is ionised..

b) the atom returns to its ground state, therefore $n_1 = 1$, and this is an emission..

Or : $\lambda = 1216 \text{ A}^\circ$ belongs to Lyman's series therefore $n_1 = 1$. Let's look for n_2 :

$$\bar{v} = \frac{1}{\lambda} = \text{Rh} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad (n_2 > n_1)$$

$$\frac{1}{\lambda \text{ Rh}} = 1 - \frac{1}{n_2^2} = \frac{1}{1216 \cdot 10^{-10} \cdot 1.1 \cdot 10^7} \Rightarrow n_2 = 1.99 = 2$$

Emission of $n_2 = 2 \longrightarrow n_1 = 1$. It is Lyman's series, therefore the line is found in UV.

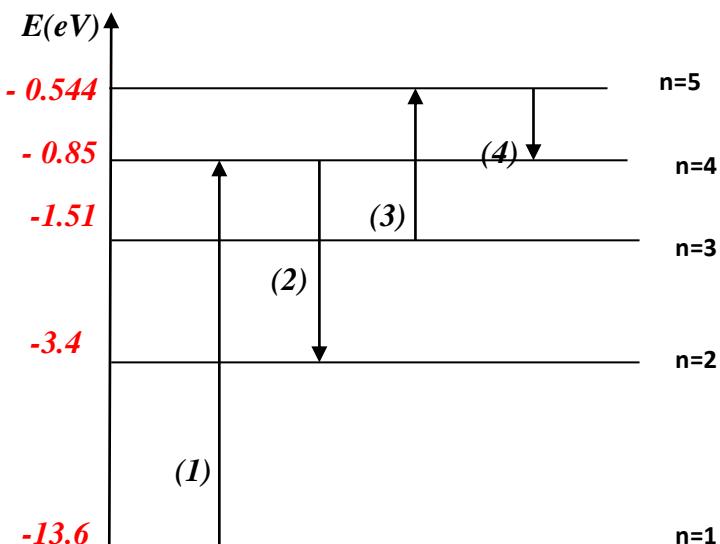
Exercise n°11

1) The series found in IR is the Paschen series $\Rightarrow n + 1 = 3$ therefore $n = 2$ and $n + 2 = 4$

$$2) \lambda_1 = \frac{1}{\lambda_1} = \text{Rh} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \quad \lambda_1 \text{ corresponds to the transition : } n_1 = 2 \longrightarrow n_2 = 4$$

$$\frac{1}{\lambda_1} = 1.1 \cdot 10^7 \left(\frac{1}{4} - \frac{1}{16} \right) \text{ therefore } \lambda_1 = 4.848 \cdot 10^{-7} \text{ m} = 4848 \text{ A}^\bullet$$

$$\frac{1}{\lambda_2} = \text{Rh} \left(\frac{1}{3^2} - \frac{1}{4^2} \right) \quad \lambda_2 \text{ corresponds to the transition : } n_1 = 3 \longrightarrow n_2 = 4$$


$$\lambda_2 = 1.8701 \cdot 10^{-6} \text{ m} = 18701 \text{ A}^\bullet$$

Exercise n°12

Transitions are represented on an energy diagram.:

- 1) 3rd abs line of Lyman $n = 1 \longrightarrow n = 4$
- 2) 2nd emis line of Balmer $n = 4 \longrightarrow n = 2$
- 3) 2nd abs line of Paschen $n = 3 \longrightarrow n = 5$
- 4) 1st emis line of Brackett $n = 5 \longrightarrow n = 4$

Exercise n°13

The wavelength for radiation is given in cm^{-1} therefore $\frac{1}{\text{wavelength}}$

$$\text{Wavelength : } \lambda = \frac{1}{1953 \text{ cm}^{-1}} = 5.12033 \cdot 10^{-4} \text{ cm} = 5120.33 \text{ nm}$$

The frequency and energy of radiation:

$$V = \frac{c}{\lambda} = \frac{3.00 \cdot 10^8 \text{ m.s}^{-1}}{5.12 \cdot 10^{-6} \text{ m}} = 5.86 \cdot 10^{13} \text{ s}^{-1} = 5.86 \cdot 10^{13} \text{ Hz}$$

$$E_{\text{chemical}} = h \nu N_A = 6.625 \cdot 10^{-34} \text{ J.s} \times 5.86 \cdot 10^{13} \text{ s}^{-1} \times 6.022 \cdot 10^{23} \text{ mol}^{-1}$$

$$E_{\text{chemical}} = 23379 \text{ J.mol}^{-1} = 23.38 \text{ kJ.mol}^{-1}$$

Exercise n°14

The absorption wavelength of barium :

$$v = \frac{c}{\lambda} \rightarrow \lambda = \frac{c}{v} = \frac{3.00 \cdot 10^8 \text{ m.s}^{-1}}{5.41 \cdot 10^{14} \text{ s}^{-1}} = 5.55 \cdot 10^{-7} \text{ m} \quad \text{therefore} \quad \lambda = 555 \text{ nm}$$

This light is part of the visible spectrum because its wavelength is between 400 nm and 750 nm.

Exercise n°15

The energy E required to remove an electron from an atom is related to the frequency v of the radiation by the relationship: $E = h v$

Where h is Planck's constant ($h = 6.6261 \cdot 10^{-34} \text{ J s}$).

Frequency itself is related to wavelength λ by the relationship :

$$v = \frac{c}{\lambda}$$

Where c is the speed of light in a vacuum ($c = 3 \times 10^8 \text{ m/s}$). Combining these two relationships, we get:

$$\lambda = \frac{hc}{E}$$

To maintain consistency in units, E must be expressed in joules. .:

$$E = 5.14 \times 1.6 \cdot 10^{-19} = 8.224 \cdot 10^{-19} \text{ J} \quad \text{therefore} \quad E = 8.224 \cdot 10^{-19} \text{ Joules}$$

And the wavelength will be:

$$\lambda = \frac{hc}{E} = \frac{6.63 \cdot 10^{-34} \text{ Js} \cdot 3 \cdot 10^8 \text{ m.s}^{-1}}{8.224 \cdot 10^{-19} \text{ J}} = 2.42 \cdot 10^{-7} \text{ m} = 242 \text{ nm}$$

$$\lambda = 242 \text{ nm}$$

Tutorial 3

*(Quantum description of the atom
and periodic classification of the elements)*

Exercise n°1*

Determine the wavelength associated with:

- a)** A ball with a mass of 2 g and a velocity of 300 m/s..
- b)** An electron with a kinetic energy of 54 eV.

Exercise n°2**

1) Among the quantum number combinations, tick the boxes that are possible and give the name of the corresponding orbital (1s, 2p, ...).

	n	L	m	s	Name of the orbital
	2	2	0	$\frac{1}{2}$	
	1	0	0	$\frac{1}{2}$	
	6	1	1	-1/2	
	5	2	1	-1/2	
	3	1	1	0	
	4	3	2	-1/2	

2) How many electrons can be placed in the L shell defined by $n = 2$? Justify your answer.
3) What is the number of valence electrons in vanadium V ($Z = 23$) and gallium Ga ($Z = 31$)?
Give the four quantum numbers of the valence electrons in gallium.

Exercise n°3**

Among the following atomic orbitals, indicate which ones are incorrect. Name the AOs..

$\Psi(1,0,0)$ $\Psi(2,1,0)$ $\Psi(4,3,-2)$ $\Psi(2,0,1)$ $\Psi(5,2,0)$ $\Psi(1,1,0)$ $\Psi(2,2,2)$

To which subshell does the AO $\Psi(2, 1, 0)$ belong? Which other AOs belong to the same subshell ? Represent them on an Oxyz coordinate system.

Exercise n°4***

Let us consider the following atoms: ${}_7\text{N}$; ${}_{15}\text{P}$; ${}_{20}\text{Ca}$; ${}_{22}\text{Ti}$; ${}_{34}\text{Se}$; ${}_{38}\text{Sr}$; ${}_{78}\text{Pt}$

- a)** Give the electron configuration of the atoms and indicate the valence electrons.
- b)** Locate the elements in the periodic table and give the ions of: ${}_{20}\text{Ca}^{2+}$; ${}_{34}\text{Se}^{2-}$
- c)** Place the valence electrons of ${}_{78}\text{Pt}$ in quantum boxes and indicate the external and internal valence subshell and the valence shell.
- d)** Give the atom that belongs to the period of ${}_3\text{Li}$ and the arsenic family ${}_{33}\text{As}$.
- e)** Classify the elements in ascending order of electronegativity.: ${}_{22}\text{Ti}$; ${}_{34}\text{Se}$; ${}_{38}\text{Sr}$; ${}_{20}\text{Ca}$.

Exercise n°5 ***

Let us consider the following atoms:

${}_{51}\text{Sb}$; ${}_{28}\text{Ni}$; ${}_{12}\text{Mg}$; ${}_{33}\text{As}$; ${}_{20}\text{Ca}$

- a)** Give the electronic configuration of the atoms.
- b)** Locate them in the periodic table
- c)** Place the valence electrons of ${}_{51}\text{Sb}$ in quantum boxes and indicate the external and internal valence s/c and the valence shell.
- d)** Give the ions of : ${}_{20}\text{Ca}$; ${}_{12}\text{Mg}$
- e)** Place the valence electrons of (${}_{33}\text{As}$) in quantum boxes and give the quantum numbers of the unpaired electrons.
- f)** Which element has the largest atomic radius and which has the smallest (ra)?
- g)** Among the elements in group IIA (if any), which is the most electronegative, and among those in period 4 (if any), which is the least electronegative.
- h)** Identify the paramagnetic and diamagnetic elements

Exercise n°6 *

1) Name the following atomic orbitals:

$\Psi(3,0,0)$, $\Psi(3,-1,0)$, $\Psi(3,1,-1)$, $\Psi(4,3,-1)$, $\Psi(2,2,2)$, $\Psi(4,2,-2)$.

2) Given the following AOs, name them using the function $\Psi(x, y, z)$:

$3p_{-1}$, $3d_{-2}$, $3f_{-2}$, $2s_0$, $3p_0$, $3d_{-2}$.

Exercise n°7 ***

1) Provide the electronic configuration of the following elements : $_{37}Rb$, $_{12}Mg$, $_{13}Al$, $_{31}Ga$, $_{38}Sr$, $_{33}As$, $_{8}O$, $_{52}Te$ et $_{84}Po$.

2) Locate these elements in the periodic table of elements.

3) What is the most stable ion that can be obtained from the following elements : $_{37}Rb$, $_{12}Mg$, $_{13}Al$, $_{38}Sr$, $_{8}O$, $_{52}Te$ et $_{84}Po$.

4) Determine the core electrons, valence electrons, valence shell, external and internal valence subshells for element $_{84}Po$, and place the valence electrons in quantum boxes.

Exercise n°8**

An element has fewer than 20 electrons and two unpaired electrons. What are its possible configurations? What is this element, given that it belongs to the period of $_{11}Na$ and the group of $_{34}Se$.

Exercise n°9 ***

1) What is the atomic number of the atom whose X^+ cation has the same electronic structure as argon ($_{18}Ar$) and the atomic number of the atom whose X^- anion has the same electronic structure as argon?

2) Name the element that belongs to column VIa and period 4.

3) Give the element that belongs to the period of lithium ($_{3}Li$) and the family of arsenic ($_{33}As$).

Exercise n°10***

1)

A) Locate elements in the periodic table: ${}_{56}\text{Ba}$; ${}_{27}\text{Co}$; ${}_{20}\text{Ca}$; ${}_{34}\text{Se}$.

B) Give the stable ions of ${}_{20}\text{Ca}$; ${}_{34}\text{Se}$.

C) Classify the elements in ascending order of electronegativity..

D) Indicate the element with the largest atomic radius..

E) **1)** X belongs to the VA family and the 3rd period. Give its atomic number..

2) X belongs to the 5th period and the boron family (${}_{5}\text{B}$). Give ZX..

Exercise n°11**

Give the atomic number of X and Y, knowing that :

a) X^{3+} has the structure of (${}_{10}\text{Ne}$).

b) Y belongs to the same period as X, and Y is missing two electrons to have the structure of a noble gas.

Exercise n°12*

Explain why the V^{5+} ion is more stable than the V^{2+} ion.

Exercise n°13**

In the copper atom in its ground state, how many electrons are characterised by the magnetic quantum number $m = +1$?

Exercise n°14*

Determine the period and column of the elements whose atomic numbers are 8 and 19, respectively.

Tutorial 3 Solutions

Exercise n°1

De Broglie wave : $\lambda = \frac{h}{m v}$

a) **λ of the ball** : mass = 2g velocity = 300 m/s

$$\lambda = \frac{6.62 \cdot 10^{-34}}{2 \cdot 10^{-3} \cdot 300} \Rightarrow \lambda = 1.1 \cdot 10^{-33} \text{ m} = 1.1 \cdot 10^{-23} \text{ A}^\bullet$$

λ of the ball is infinitely small, therefore the Broglie wavelength is insignificant on a macroscopic scale.

b) **λ of an electron with kinetic energy** : $E_c = 54 \text{ eV}$

$$E_c = \frac{1}{2} m v^2 \Rightarrow v = \sqrt{\frac{2 E_c}{m e^-}} \text{ therefore } \lambda = \frac{h}{m v} = \frac{6.62 \cdot 10^{-34}}{9.1 \cdot 10^{-31} \sqrt{\frac{2 E_c}{m e^-}}}$$

$$\lambda = \frac{6.62 \cdot 10^{-34}}{9.1 \cdot 10^{-31} \sqrt{\frac{2 \cdot 54 \cdot 1.6 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}}} \lambda = 1.67 \cdot 10^{-10} \text{ m} = 1.67 \text{ A}^\bullet$$

De Broglie's wavelength is significant at the microscopic scale..

Exercise n°2 1)

	n	ℓ	m	s	Name of the orbital	
No	2	2	0	1/2	does not exist because (ℓ) does not satisfy the condition	
✓	1	0	0	1/2	1s ₀	$\psi(1,0,0)$
✓	6	1	1	-1/2	6p ₊ 1	$\psi(6,1,1)$
✓	5	2	1	-1/2	5d ₊ 1	$\psi(5,2,1)$
No	3	1	1	0	does not exist because (ℓ) does not satisfy the condition	
✓	4	3	2	-1/2	4f ₊ 2	$\psi(4,3,2)$

Conditions : For an atomic orbital to exist, it must:

The principal quantum number (n) verifies: $n \in N^*$

The secondary quantum number (ℓ) verifies : $0 \leq \ell \leq n-1$

The magnetic quantum number (m) verifies : $-\ell \leq m \leq +\ell$

The spin checks : $S = \pm 1/2$

2) **The maximum number of electrons in the layer L ($n = 2$) :**

$$n = 2 \quad 0 \leq \ell \leq n-1 \quad \Rightarrow \quad 0 \leq \ell \leq 1 \quad \begin{cases} \ell = 0 \text{ therefore subshell } 2s \\ \ell = 1 \text{ therefore subshell } 2p \end{cases} \quad \left. \right\}$$

Therefore 2 electrons in the 2s subshell and 6 electrons in the 2p subshell.

The maximum number of electrons in the L shell is **8 electrons**.

3) **The valence electrons of Vanadium :**

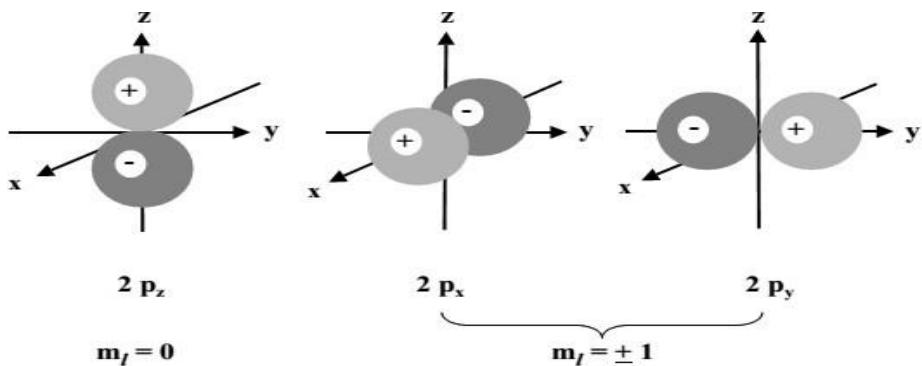
$_{23}V$: $[\text{Ar}] 4s^2 4d^3$ number of e- of valence : **5 e-**

$_{31}Ga$: $[\text{Ar}] 4s^2 3d^{10} 4p^1$

The valence electrons of Gallium: 3 e-

The quantum numbers of Gallium valence electrons $_{31}Ga$: $[\text{Ar}] 4s^2 3d^{10} 4p^1$

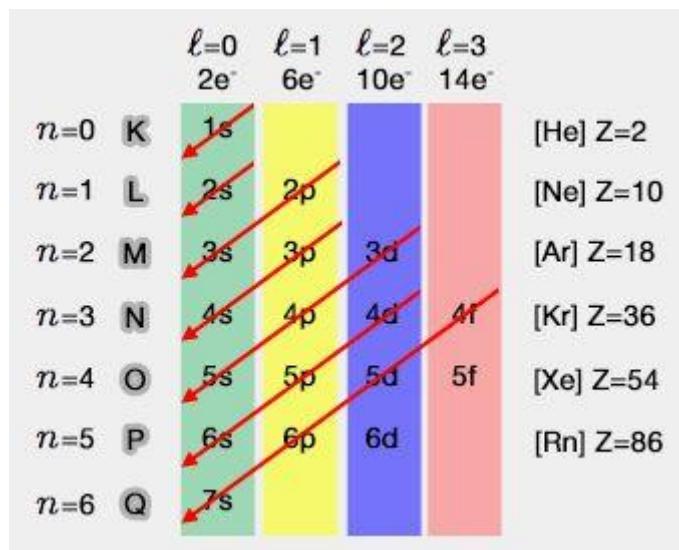
$4s^2$	$4p^1$
$n = 4$	$n = 4$
$\ell = 0$	$\ell = 1$
$m = 0$	$m = -1, 0, +1$
$s = +1/2$	$s = +1/2$

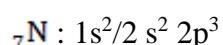

Exercise n°3 :

a) **Conditions:** $n \in \text{IN}^* \quad 0 \leq \ell \leq n-1 \quad -\ell \leq m \leq +\ell$

	<i>Names of atomic orbitals</i>
$\psi(1,0,0)$	$1s_0$
$\psi(2,1,0)$	$2p_0$
$\psi(4,3,-2)$	$4f_{-2}$
$\psi(2,0,1)$	<i>False because ℓ does not check the condition</i>
$\psi(5,2,0)$	$5d_0$
$\psi(1,1,0)$	<i>False because ℓ does not check the condition</i>
$\psi(2,2,2)$	<i>Fausse because ℓ does not check the condition</i>

b) The atomic orbital (AO) $\psi(2,1,0)$ or $(2p_0)$, therefore the AO belongs to layer L ($n = 2$) and to the subshell $2p$ ($\ell = 1$) therefore there is $3(0A)$ in the subshell $2p$. These are: $2p_{-1}$, $2p_0$, $2p_{+1}$


Representation of the three orbitals of subshell $2p$:


Exercise n°4

a) the electronic procession of the elements:

We apply Klechkowski's rule (or energy order)

On this energy diagram, we observe that the energetic filling order is as follows : 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p

$_{15}\text{P}$: $1s^2 2s^2 2p^6/3s^2 3p^3$

$_{15}\text{P}$: $(_{10}\text{Ne}) 3s^2 3p^3$ **5 valence electrons**

$_{20}\text{Ca}$: $1s^2 2s^2 2p^6 3s^2 3p^3 3s^2 3p^3/4s^2$

$_{20}\text{Ca}$: $(_{18}\text{Ar}) 4s^2$ **2 valence electrons**

$_{22}\text{Ti}$: $1s^2 2s^2 2p^6 3s^2 3p^6/4s^2 3d^2$

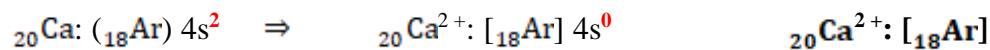
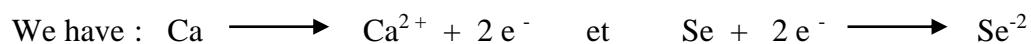
$_{22}\text{Ti}$: $(_{18}\text{Ar}) 4s^2 3d^2$ **4 valence electrons**

$_{34}\text{Se}$: $1s^2 2s^2 2p^6 3s^2 3p^6/4s^2 3d^{10} 4p^4$

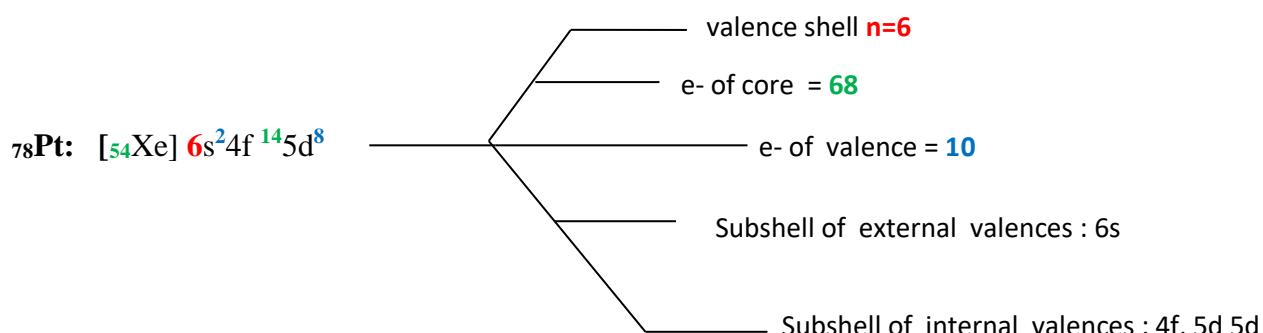
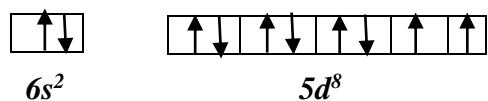
$_{34}\text{Se}$: $(_{18}\text{Ar}) 4s^2 3d^{10} 4p^4$ **6 valence electrons**

$_{38}\text{Sr}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6/5s^2$

$_{38}\text{Sr}$: $(_{36}\text{Kr}) 5s^2$ **2 valence electrons**




$_{78}\text{Pt}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6/6s^2 4f^{14} 5d^8$

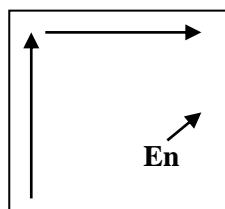
$_{78}\text{Pt}$: $(_{54}\text{Xe}) 6s^2 4f^{14} 5d^8$ **10 valence electrons**



b) Situation des éléments dans le tableau périodique :

Element	Procession	Number of valence electrons	Family	Period
$_{7}\text{N}$	$(_{2}\text{He}) 2s^2 2p^3$	5	VA	$n = 2$
$_{15}\text{P}$	$(_{10}\text{Ne}) 3s^2 3p^3$	5	VA	$n = 3$
$_{20}\text{Ca}$	$(_{18}\text{Ar}) 4s^2$	2	IIA	$n = 4$
$_{22}\text{Ti}$	$(_{18}\text{Ar}) 4s^2 3d^2$	4	IVB	$n = 4$
$_{34}\text{Se}$	$(_{18}\text{Ar}) 4s^2 3d^{10} 4p^4$	6	VIA	$n = 4$
$_{38}\text{Sr}$	$(_{36}\text{Kr}) 5s^2$	2	IIA	$n = 5$
$_{78}\text{Pt}$	$(_{54}\text{Xe}) 6s^2 5d^8$	10	VIIIA (Triades Bloc d)	$n = 6$

The stable ions of Ca et Se :

c) ${}_{78}^{196}\text{Pt}$: [Xe] 6s² 4f¹⁴ 5d⁸ Il a **10 valence electrons**

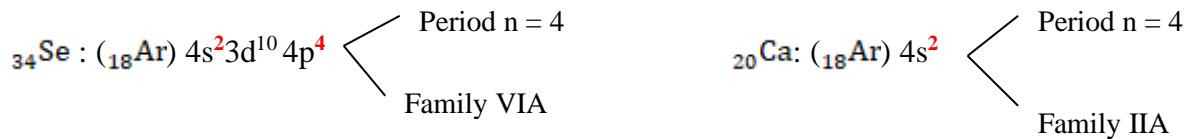

d) X \in period of ${}_{3}^{6}\text{Li}$: (He) 2s¹ \Rightarrow n = 2

X \in family of ${}_{33}^{75}\text{As}$: (Ar) 4s² 3d¹⁰ 4p³ Family VA

X ends therefore : 2s² 2p³

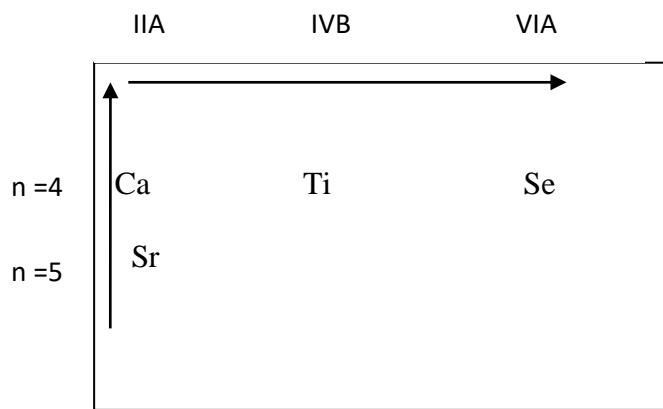
X: 1s² 2s² 2p³ therefore Z = 7 (nitrogen)

e) Electronegativity (En) varies in the periodic table as follows::


Ranking of elements in ascending order of electronegativity: ${}_{22}^{46}\text{Ti}$; ${}_{34}^{74}\text{Se}$; ${}_{38}^{78}\text{Sr}$; ${}_{20}^{40}\text{Ca}$.

${}_{22}^{46}\text{Ti}$: (Ar) 4s² 3d²

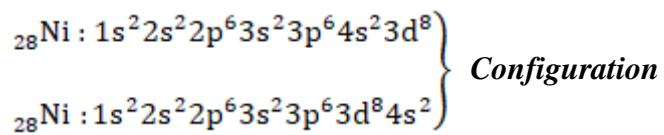
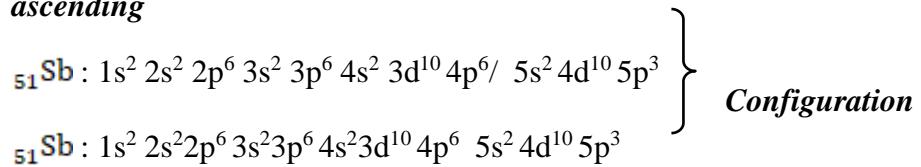
Period n = 4
Family IVB


${}_{38}^{78}\text{Sr}$: (Kr) 5s²

Period n = 5
Family IIA

Elements in the periodic table:

- Variation of electronegativity in periodic table

The increasing order of electronegativity of the elements will be :

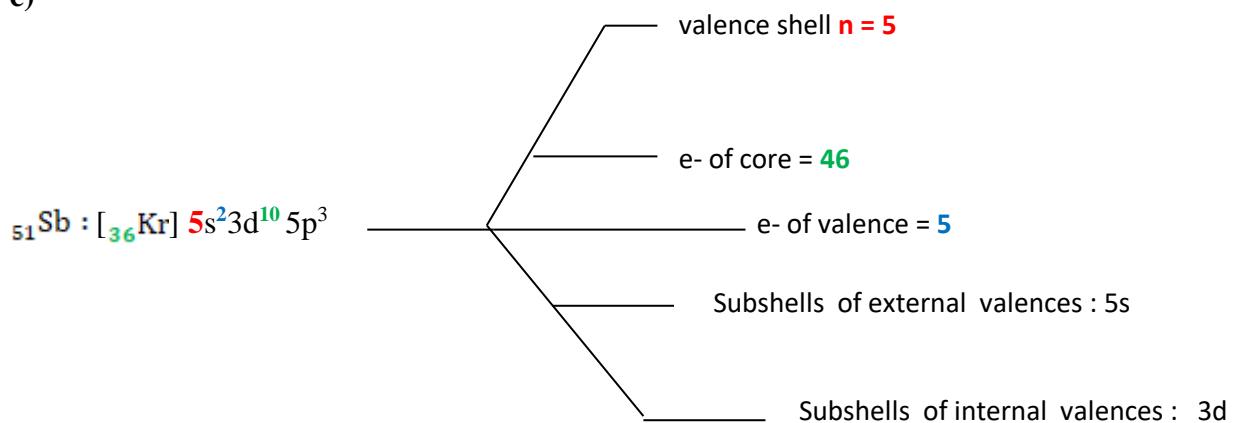
EN (Sr) < EN (Ca) < EN (Ti) < EN (Se)

Exercise n°5

a) Configuration of elements: *Klechkowsky + class Configuration according to (n) ascending*

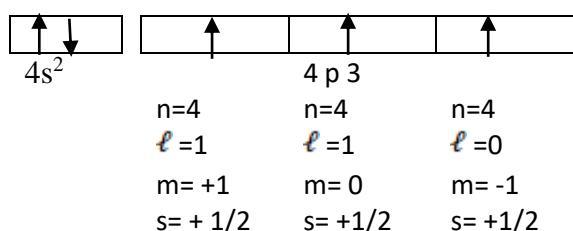
$_{12}^{24}\text{Mg} : 1s^2 2s^2 2p^6 3s$ **Procession = configuration**

$_{33}^{75}\text{As} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$ **Procession**
 $_{33}^{75}\text{As} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4s^2 4p^3$ **Configuration**


$_{20}^{40}\text{Ca} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ **Procession = configuration**

$_{20}^{40}\text{Ca} : (\text{Ar}) 4s^2$

b) Position of elements in the periodic table

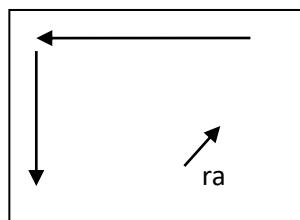

Element	Simplified procession	Period	Family
$_{51}^{103}\text{Sb}$	$[\text{Ar}] 5s^2 3d^{10} 5p^3$	5	VA
$_{28}^{56}\text{Ni}$	$[\text{Ar}] 4s^2 3d^8$	4	VIIIB (Triad)
$_{12}^{24}\text{Mg}$	$(\text{Ar}) 3s^2$	3	IIA
$_{33}^{75}\text{As}$	$(\text{Ar}) 4s^2 3d^{10} 4p^3$	4	VA
$_{20}^{40}\text{Ca}$	$(\text{Ar}) 4s^2$	4	IIA
$_{38}^{76}\text{Sr}$	$[\text{Ar}] 5s^2$	5	IIA

c)

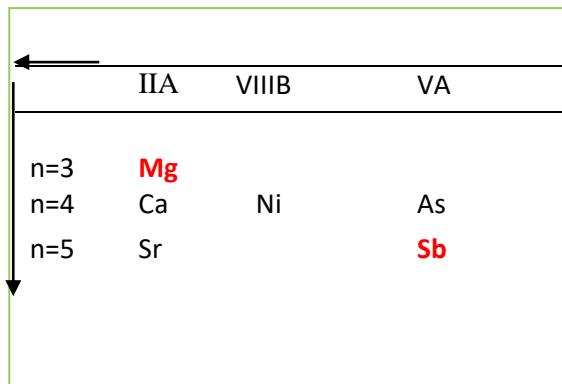
d) The valence electrons of arsenic in quantum boxes

$_{33}^{75}\text{As} : (\text{Ar}) 4s^2 3d^{10} 4p^3$ **5 valence electrons**

e) The stable ions of ${}_{20}\text{Ca}$ et ${}_{12}\text{Mg}$ Ca^{2+} et Mg^{2+}

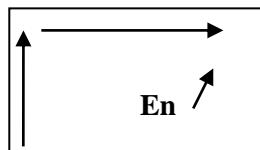


${}_{12}\text{Mg}$: $({}_{10}\text{Ne})\ 3s^2$ ${}_{12}\text{Mg}^{2+}$: $({}_{10}\text{Ne})\ 3s^0$ therefore Mg^{2+} : $({}_{10}\text{Ne})$ **stable ion**


${}_{20}\text{Ca}$: $({}_{18}\text{Ar})\ 4s^2$ ${}_{20}\text{Ca}^{2+}$: $({}_{18}\text{Ar})\ 3s^0$ therefore Ca^{2+} : $({}_{18}\text{Ar})$ **stable ion**

f) The element with the largest atomic radius and the element with the smallest atomic radius

The atomic radius varies in the periodic table as follows :,


The elements are placed in the periodic table.

The element with the largest atomic radius is **Sb (antimony)**.

The element with the smallest atomic radius is **Mg (magnesium)**.

g) Electronegativity varies across the periodic table as follows:

Of the elements in family IIA, the most electronegative is: **Mg**

EN (Mg) > EN (Ca) > EN (Sr)

Of the elements in the 4th period, the least electronegative is: **Ca**

EN (As) > EN (Ni) > EN (Ca)

h) Diamagnetic elements do not have unpaired electron s: ${}_{12}^{\text{Mg}}$, ${}_{20}^{\text{Ca}}$

Paramagnetic elements have unpaired electrons : ${}_{33}^{\text{As}}$, ${}_{28}^{\text{Ni}}$, ${}_{51}^{\text{Sb}}$.

Exercise n°6

a) Conditions that must be verified by a AO: $n \in IN^*$ $0 \leq \ell \leq n-1$ $-\ell \leq m \leq +\ell$

<i>Atomic orbital names</i>	
$\psi(3,0,0)$	$3s_0$
$\psi(3,-1,0)$	<i>False because ℓ does not check the condition</i>
$\psi(3,1,-1)$	$3p_1$
$\psi(4,3,-1)$	$4f_{-1}$
$\psi(2,2,2)$	<i>False because ℓ does not check the condition</i>
$\psi(4,2,-2)$	$4d_{-2}$

b) Name of AOs using the function $\Psi(n, \ell, m)$

<i>Atomic orbitals</i>	<i>Atomic orbital names</i>
$3p_1$	$\psi(3,1,-1)$
$3d_{-2}$	$\psi(3,2,-2)$
$3f_{-2}$	<i>False because ℓ does not check the condition</i>
$2s_0$	$\psi(2,0,0)$
$3p_0$	$\psi(3,1,0)$
$3d_{-2}$	$\psi(3,2,-2)$

Exercise n°7

1) Configuration = procession + classification of subshells according to $n \nearrow$

$_{37}\text{Rb}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 / 5s^1$ *Cortège* } *Configuration*

$_{37}\text{Rb}$: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$

$_{37}\text{Rb}$: $[\text{Kr}] 5s^1$

$_{12}\text{Mg}$: $1s^2 2s^2 2p^6 / 3s^2$ *Procession = configuration*

$_{12}\text{Mg}$: $[\text{Ne}] 3s^2$

$_{13}\text{Al}$: $1s^2 2s^2 2p^6 / 3s^2 3p^1$ *Procession = configuration*

$_{13}\text{Al}$: $[\text{Ne}] 3s^2 3p^1$

$_{31}\text{Ga}$: $1s^2 2s^2 2p^6 3s^2 3p^6 / 4s^2 3d^{10} 4p^1$ *Procession* } *Configuration*

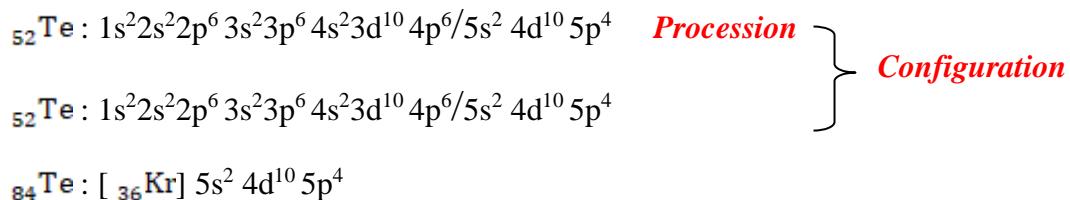
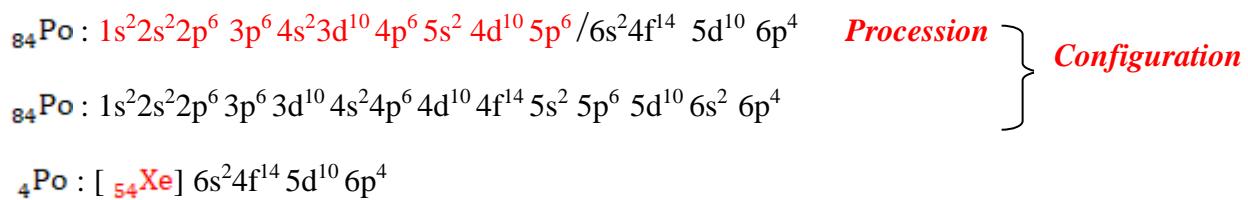
$_{31}\text{Ga}$: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$

$_{31}\text{Ga}$: $[\text{Ar}] 4s^2 3d^{10} 4p^1$

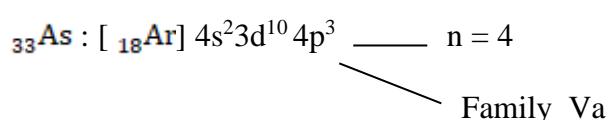
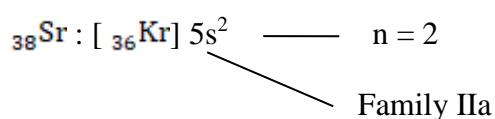
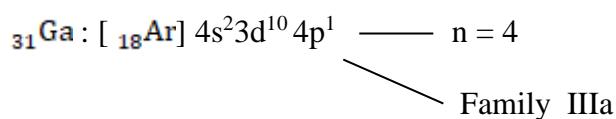
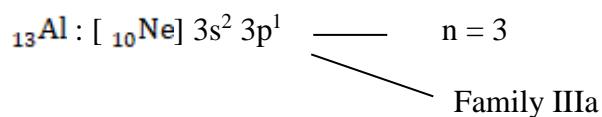
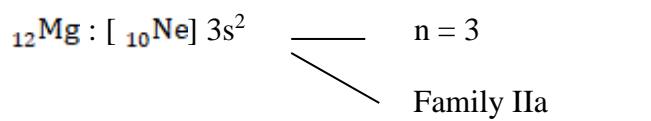
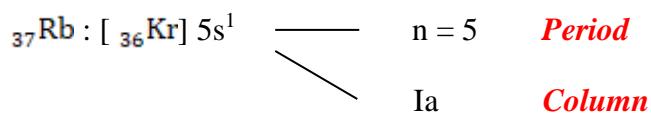
$_{38}\text{Sr}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 / 5s^2$ *Procession* } *Configuration*

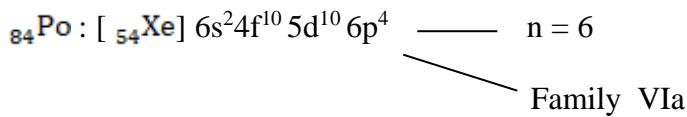
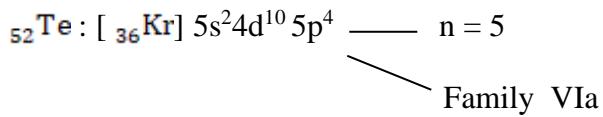
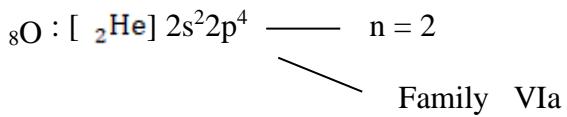
$_{38}\text{Sr}$: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^2$

$_{38}\text{Sr}$: $[\text{Kr}] 5s^2$



$_{33}\text{As}$: $1s^2 2s^2 2p^6 3s^2 3p^6 / 4s^2 3d^{10} 4p^3$ *Procession* } *Configuration*

$_{33}\text{As}$: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$







$_{33}\text{As}$: $[\text{Ar}] 4s^2 3d^{10} 4p^3$




$_{8}\text{O}$: $1s^2 / 2s^2 2p^4$ *Procession = configuration*

$_{8}\text{O}$: $[\text{He}] 2s^2 2p^4$

2) Position of elements in the periodic table

3) We note that:

${}_{\text{8}}\text{O}$, ${}_{\text{52}}\text{Te}$, ${}_{\text{84}}\text{Po}$ belong to the same Family VIa as oxygen, the stable ions will be :

${}_{\text{8}}\text{O}^{-2}$ structure of $({}_{\text{10}}\text{Ne})$; ${}_{\text{52}}\text{Te}^{-2}$ structure of $({}_{\text{54}}\text{Xe})$; ${}_{\text{84}}\text{Po}^{-2}$ structure of $({}_{\text{86}}\text{Rn})$.

${}_{\text{12}}\text{Mg}$ et ${}_{\text{38}}\text{Sr}$ belong to the same Family IIa, the stable ions will be:

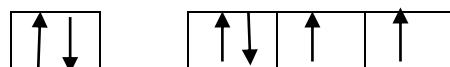
${}_{\text{12}}\text{Mg}^{2+} ({}_{\text{10}}\text{Ne})$ et ${}_{\text{38}}\text{Sr}^{2+} ({}_{\text{36}}\text{Kr})$

${}_{\text{37}}\text{Rb}$: belongs to the same Family Ia, the stable ion will be ${}_{\text{38}}\text{Rb}^+ ({}_{\text{36}}\text{Kr})$

4) ${}_{\text{84}}\text{Po} : [{}_{\text{54}}\text{Xe}] 6s^2 4f^{14} 5d^{10} 6p^4$

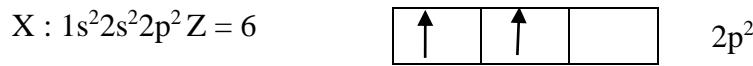
The core electrons = 54 + the electrons of the internal subshells when they are saturated.

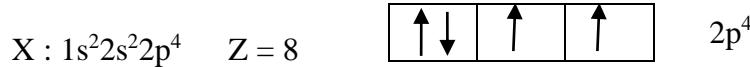
Therefore : $54 + 14 + 10 = 78 \text{ e}^-$


The e- of valence = 6 e-

The shell of valence : $n = 6$

The internal valence subshells : 4f, 5d

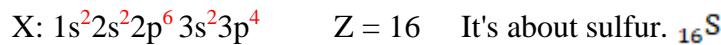



The external valence subshells: $6s^2 6p^4$

The valence electrons in quantum boxes

Exercise n°8

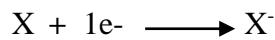
X has less than 20 e- and 2 unpaired e-, X can have the following electronic structures:



X belongs to the period of $_{11}Na$: $(_{10}Ne)$ $3s^1$ therefore $n = 3$

X belongs to the Family $_{34}Se$: $(_{18}Ar)$ $4s^2 3d^{10} 4p^4 \Rightarrow$ the Family VIA

The structure of X will therefore end in the form : $3s^2 3p^4$


We then establish the procession of X.

Exercise n°9

The ion X⁺ has the same structure as e ($_{18}Ar$) Therefore $Zx = 19$ (Potassium)

The ion X⁻ has the same structure as ($_{18}Ar$) Therefore $Zx = 17$ (Chlore)

2) X belongs to the column VIA and to the 4th period :

Column VIA \Rightarrow $ns^2 np^4$
 period n = 4 } \Rightarrow The structure of X will end in the form : $4s^2 4p^4$

We establish the procession of X.

3) X belongs to the period of ${}_{3}\text{Li}$: (${}_{2}\text{He}$) $2s^1 \Rightarrow$ X belongs to the period $n = 2$

X belongs to the family of ${}_{33}\text{As}$: (${}_{18}\text{Ar}$) $4s^2 3d^{10} 4p^3 \Rightarrow$ X belongs to the family Va

The structure of X will end in the form: $2s^2 4p^3$

We establish the procession of X.

X: $1s^2 2s^2 2p^6$ therefore $Z = 10$ (Argon)

Exercise n°10

1) A) Situation of the elements in the periodic table

To locate the elements in the periodic table, we establish the electronic procession according to the Klechkowski diagram, then we write the procession using noble gasses.

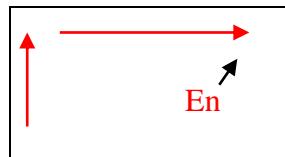
We will therefore have:

Element	Simplified procession	Period	Family
${}_{56}\text{Ba}$	$[{}_{54}\text{Xe}] 6s^2$	6	IIA
${}_{27}\text{Co}$	$[{}_{18}\text{Ar}] 4s^2 3d^7$	4	VIIIB (Triad)
${}_{20}\text{Ca}$	$[{}_{18}\text{Ar}] 4s^2$	4	IIA
${}_{34}\text{Se}$:	$[{}_{18}\text{Ar}] 4s^2 3d^{10} 4p^4$	4	VIA

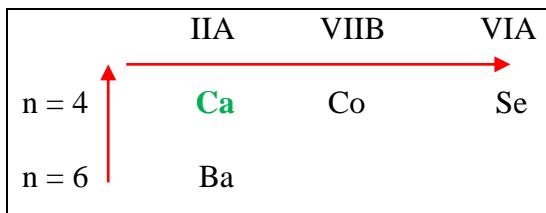
B) The stable ions of calcium and selenium

We have : $\text{Ca} \longrightarrow \text{Ca}^{2+} + 2e^-$

$\text{Se} + 2e^- \longrightarrow \text{Se}^{2-}$


Stable ions will be :

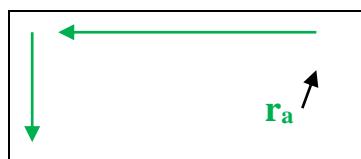
${}_{20}\text{Ca}^{2+}$: $[{}_{18}\text{Ar}]$ stable ion of calcium


${}_{34}\text{Se}^{2-}$: $[{}_{36}\text{Kr}]$ stable ion of selenium

C) Ranking in ascending order of electronegativity

Electronegativity (En) varies in the periodic table as follows :

We put the elements on the board.



Therefore the increasing ranking of electronegativity :

$$En (Ba) < En (Ca) < En (Co) < En (Se)$$

D) the atomic radius r_a :

The atomic radius varies in the periodic table as follows:

Therefore calcium (Ca) has the largest atomic radius.

E)

1) X belongs to the 3rd period $\Rightarrow n = 3$ }
X belongs to the family V_A : ns^2np^3 }

The structure of X will end in the form: $3s^2 3p^3$

We then establish the procession of X.

X : $1s^2 2s^2 2p^6 3s^2 3p^3$ **Z = 15 (Phosphorus)**

2)

X belongs to the 5th period $\Rightarrow n = 5$
X belongs to the Boron column ${}_{\text{5}}\text{B} : [{}_{\text{2}}\text{He}] 2s^2 2p^1 \}$:

The structure of X will end in the form : $5s^2 5p^5$

We then establish the procession of X.

X: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^1$ $Z = 49$ (**Indium**)

Exercise n°11

The atomic number of the elements X and Y :

a) X³⁺ possesses the structure of (${}_{\text{10}}\text{Ne}$) $\Rightarrow X^{3+} : 1s^2 2s^2 2p^6$

X \longrightarrow X³⁺ + 3 e- therefore $Z_x = 13$ (**Aluminium**)

b) Y belongs to the same period as ${}_{\text{13}}\text{X} : [{}_{\text{10}}\text{Ne}] 3s^2 3p^1$

\Rightarrow Period of Y is $n = 3$

In period 3, there are 18 elements, the last element is (${}_{\text{18}}\text{Ar}$), element Y is missing two electrons to have the structure of Argon. $\Rightarrow Z_y = 16$ (**Sulphur**)

Exercise n°12

The atomic number of vanadium is Z = 23. The electron configurations of the element vanadium and the ions considered are as follows:

${}_{\text{23}}\text{V}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$

${}_{\text{23}}\text{V}^{2+}$: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$

${}_{\text{23}}\text{V}^{5+}$: $1s^2 2s^2 2p^6 3s^2 3p^6$

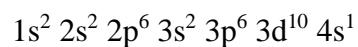
The configuration of V^{5+} is identical to that of Ar, particularly stable since the $n = 3$ level is filled. This ion is therefore more stable than V^{2+} which has 3 unpaired electrons in 3 d orbitals. We can therefore see that the octet rule does not always apply to transition metals.

Exercise n°13

The electrons of copper that are characterized by the magnetic quantum number $m = +1$:

We also refer to the rules that connect the 4 quantum numbers to each other. :

The principal quantum number (n) verifies : $n \in N^*$


The secondary quantum number (ℓ) verifies : $0 \leq \ell \leq n-1$

The magnetic quantum number (m) verifies : $-\ell \leq m \leq +\ell$

The spin checks: $S = \pm 1/2$

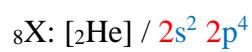
By applying these rules to the relevant energy levels, we obtain the answer to this question.

Copper corresponds to $Z = 29$ and the corresponding electronic configuration is as follows:

By explicating the 4 levels of the 4th period, we write:

$n = 1$	$\ell = 0$	$m = 0$	no electron with $m = +1$
$n = 2$	$\ell = 0$	$m = 0$	no electron with $m = +1$
	$\ell = 1$	$m = -1, 0, +1$	2 electrons with $m = +1$
$n = 3$	$\ell = 0$	$m = 0$	no electron with $m = +1$
	$\ell = 1$	$m = -1, 0, +1$	2 electrons with $m = +1$
	$\ell = 2$	$m = -2, -1, 0, +1, +2$	2 electrons with $m = +1$
$n = 4$	$\ell = 0$	$m = 0$	no electron with $m = +1$

In total, copper, in its ground state, has 6 electrons characterized by the quantum number



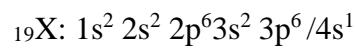
$$m_{\ell} = +1$$

Exercise n°14

The period and the column of the elements whose atomic numbers are respectively 8 and

19. $Z = 8$

The electronic procession of the element is:



Period $n = 2$

Family **VIA**

it's Oxygen.

Z = 19

The electronic procession of the element is :

Period $n = 4$

Family **IA**

It's Potassium

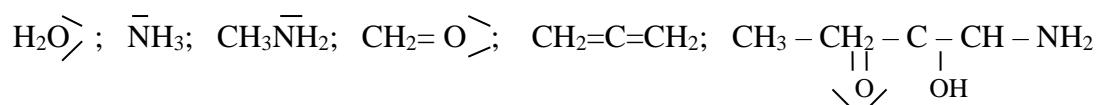
Tutorial 4 ***(chemical bonds)***

Exercise n°1 **

The HCl molecule has a dipole moment equal to 1.03 Debye and a bond length of $d = 1.27\text{ \AA}$.

- 1) Calculate the partial charge of this bond. Indicate the direction of the moment of this bond.
- 2) Calculate the ionic percentage of this bond. Discuss.
- 3) Classify the following bonds in decreasing order of polarity : HF, OH et H-Br.

Exercise n°2***


Give the Lewis diagrams of:

- 1) Compounds: a) AlCl_3 ; b) HClO ; c) HClO_2 ; d) HClO_3 .
- 2) Ions: a) $(\text{ClO}_3)^-$; b) $(\text{ClO}_4)^-$; c) $(\text{CO}_3)^{2-}$.
- 3) What are the elements in these molecules that do not follow the octet rule?.

Data : ${}_1\text{H}$, ${}_6\text{C}$, ${}_8\text{O}$, ${}_{13}\text{Al}$, ${}_{17}\text{Cl}$.

Exercise n°3**

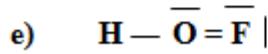
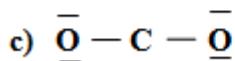
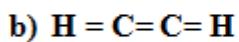
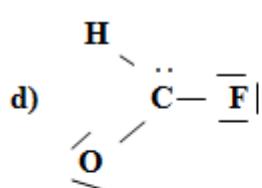
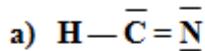
Give the hybridization of the atoms of the molecules, indicate the geometry as well as the angles.

Exercise n° 4 *

The dipole moment of the Li - H bond is $\mu = 5.88$ Debyes. Its partial ionic character is 77%.

Calculate the bond length.

Exercise n°5**






Complete the following table: We are given: ${}_1\text{H}$, ${}_5\text{B}$, ${}_6\text{C}$, ${}_7\text{N}$, ${}_8\text{O}$, ${}_9\text{F}$, ${}_16\text{S}$, ${}_17\text{Cl}$

Chemical species	Lewis diagram	AXmEn	Geometry
OCS	$\begin{array}{c} \text{S}=\text{C}=\ddot{\text{O}} \\ \hline \end{array}$		
SO_4^{2-}	$\begin{array}{c} \text{O} \quad \text{O} \\ \text{O} \quad \text{S} \quad \text{O} \\ \text{O} \quad \text{O} \\ \hline \end{array}$		
SO_3	$\begin{array}{c} \text{O} \\ \text{S} \quad \text{O} \\ \text{O} \quad \text{O} \\ \hline \end{array}$		
NOCl	$\begin{array}{c} \text{Cl} \quad \text{N} \quad \text{O} \\ \text{Cl} \quad \text{N} \quad \text{O} \\ \hline \end{array}$		
NO_3^-	$\begin{array}{c} \text{O} \\ \text{N} \quad \text{O} \\ \text{O} \quad \text{O} \quad \text{O} \\ \hline \end{array}$		

Exercise n°6**

The following Lewis structures are incorrect, correct them.

Data : ${}_1\text{H}$ ${}_6\text{C}$ ${}_7\text{N}$ ${}_8\text{O}$ ${}_9\text{F}$

Exercise n°7**

Indicate the type of bond (σ s-s, σ s-p, σ p-p) in the following molecules.:

HF, F₂, H₂, O₂.

Exercise n°8**

Give the hybridization of the atoms of the following molecules, as well as the Gillespie formula of the molecules, specifying their geometry.

Data : ₁H, ₄Be, ₆C, ₇N, ₈O, ₁₅P, ₁₆S, ₁₇Cl

Tutorial 4 Solutions

Exercise n° 1

The partial charge of the bond

$$\mu(\text{HCl}) = 1.03 \text{ Debyes} \quad 1 \text{ Debyes} = 0.33 \times 10^{-29} \text{ Coulombs-Meters}$$

$$1) \mu(\text{HCl}) = \delta \cdot d \Rightarrow \delta = \frac{\mu}{d} = \frac{1.03 \times 0.33 \times 10^{-29}}{1.27 \times 10^{-10}}$$

$$\delta = 2.67 \times 10^{-20} \text{ Coulombs}$$

The dipole moment is oriented from the negative pole toward the positive pole. $\text{H}^{+\delta} \longleftrightarrow \text{Cl}^{-\delta}$

2) Ionic percentage of HCl

$$\% \text{ ionic} = \frac{\mu_{\text{exp}}}{\mu_{\text{ereo}}} \times 100 = \frac{\delta}{e} \times 100$$

$$\text{Ionic percentage of HCl} = \frac{2.67 \times 10^{-20}}{1.6 \times 10^{-19}} \times 100$$

Therefore : **% ionic HCl = 16.68 %**

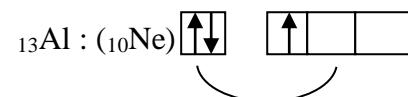
This indicates that **16.68%** of the HCl bond is **ionic**, the rest, that is

100 - 16.68 = 83.32 % the bond is *polarized covalent*.

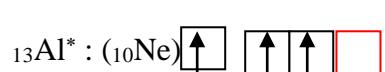
3) According to the electronegativity of the elements, we have: En (F) > En (Cl) > En (Br)

Therefore the decreasing order of polarity will be: HF > HCl > HBr

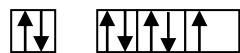
HF > HCl > HBr


The more electronegative the atom, the more polarized the bond.

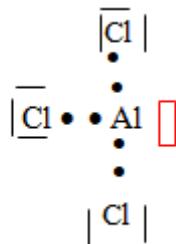
Exercise n° 2


1) Lewis structure of compounds

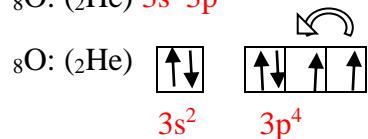
a) AlCl_3


${}_{13}\text{Al} : ({}_{10}\text{Ne}) 3s^2 3p^1$

Therefore the atom will be : $\overline{\text{Al}} \bullet$



${}_{17}\text{Cl} : ({}_{10}\text{Ne}) 3s^2 3p^5$

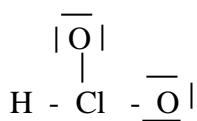

Therefore the atom will be : $|\overline{\text{Cl}}\bullet|$

The Lewis structure will be :

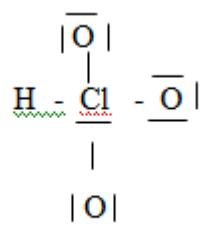
b) HClO

${}_{8}\text{O} : ({}_{2}\text{He}) 3s^2 3p^4$

Excited oxygen is obtained.



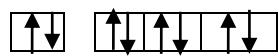
${}_{1}\text{H} : 1s^1$


${}_{1}\text{H} : \text{H}\bullet$

Therefore, the Lewis structure will be : $\text{H}\bullet\bullet\overline{\text{Cl}}|\rightarrow\overline{\text{O}}|\overline{\text{O}}|$ Finally : $\text{H}-\overline{\text{Cl}}-\overline{\text{O}}-\overline{\text{O}}|$

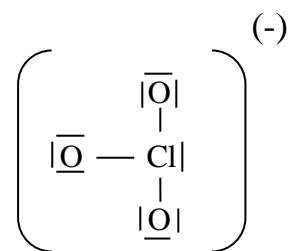
c) HClO_2

d) HClO_3

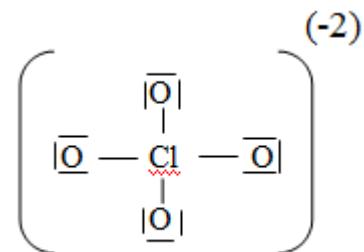


2) Lewis structure of ions

a) ClO_3^- :

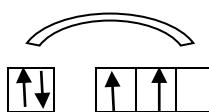

Lewis structure of atoms : $|\overline{\text{Cl}}\bullet$; $\bullet\overline{\text{O}}\bullet$

${}_8\text{O}^-$: (${}_2\text{He}$)

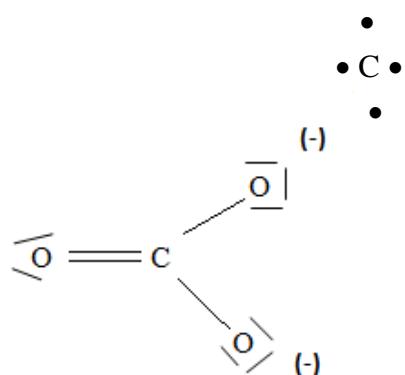


$|\overline{\text{O}}|^{(-)}$

${}_8\text{O}^*$: $|\overline{\text{O}}\bullet$



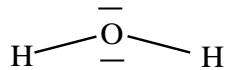
b) ClO_4^-



c) CO_3^{2-}

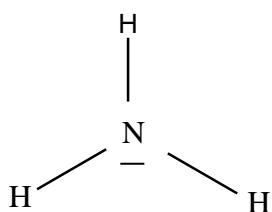
${}_6\text{C}$: (${}_2\text{He}$)

${}_6\text{C}^*$: (${}_2\text{He}$)

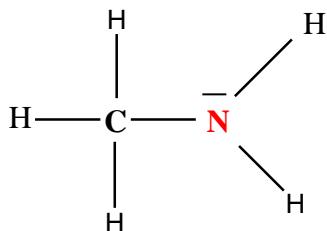


3) The element aluminium (Al) does not obey the octet rule because it is surrounded by 10 electrons..

Exercise n° 3

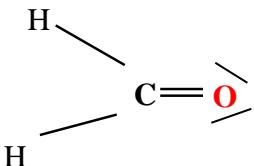

Hybridisation of molecules' atoms

H_2O

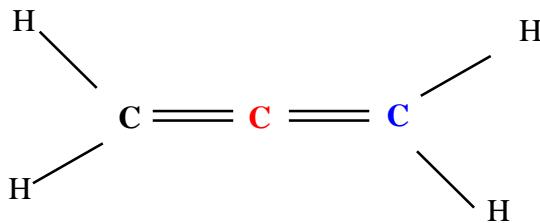
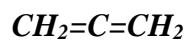

sp^3 Tetrahedron angle $109^\circ 28'$

\overline{NH}_3

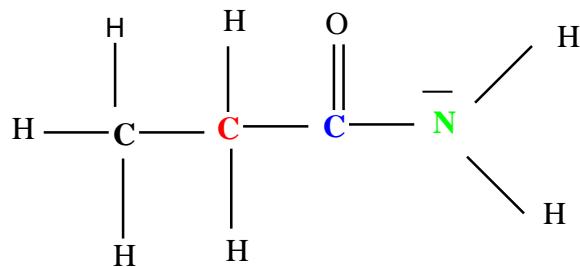
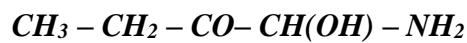
sp^3 Tetrahedron angle $109^\circ 28'$


CH_3NH_2

sp^3 Tetrahedron angle $109^\circ 28'$



sp^3 Tetrahedron angle $109^\circ 28'$

$CH_2=\overline{O}$

sp^2 Plane triangle angle 120°

sp^2 Plane triangle angle 120°

sp² Plane triangle angle 120° *sp Linear angle 180°* *sp² Plane triangle angle 120°*

sp³ Tetrahedron angle 109°28' *sp² Plane triangle angle 120°*
sp³ Tetrahedron angle 109°28' *sp² Plane triangle angle 120°*

Exercise n° 4

The length of the bond Li-H

The dipole moment $\mu = 5.88$ Debyes and the ionic character = 77%

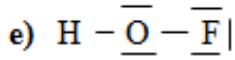
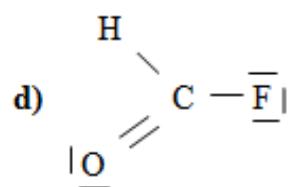
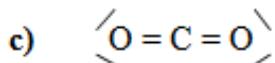
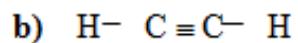
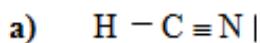
We know that :

$$C\% = \frac{\mu_{\text{exp}}}{\mu_{\text{theo}}} \cdot 100 = \frac{\mu_{\text{exp}}}{e \cdot d} \cdot 100$$

Therefore the length of the bond will be :

$$d = \frac{5.88 \cdot 0.33 \cdot 10^{-29}}{1.6 \cdot 10^{-19} \cdot 0.77} = 1.575 \cdot 10^{-10} \text{ m} = 1.58 \text{ \AA}$$

$$d = 1.58 \text{ \AA}$$






Exercise n° 5

We complete the following table:

Chemical species	Lewis diagram	AXmEn	Geometry
OCS		AX ₂	Linear $\alpha = 180^\circ$
SO ₄ ²⁻		AX ₄	Tetrahedron $\alpha = 109^\circ 28'$
SO ₃		AX ₃	Plane Triangle $\alpha = 120^\circ$
NOCl		AX ₂ E	V-shaped molecule $\alpha < 120^\circ$
NO ₃ ⁻		AX ₃	Plane Triangle $\alpha = 120^\circ$

Exercise n° 6

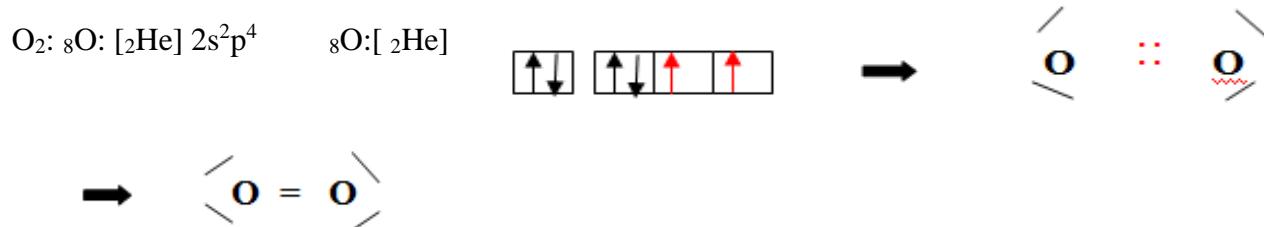
The correct Lewis structures of the molecules will be :

Exercise n°7


To indicate the type of bond (σ s-s, σ s-p, σ p-p) in molecules : HF, F₂, H₂, O₂, we must establish the Lewis structure

H₂:

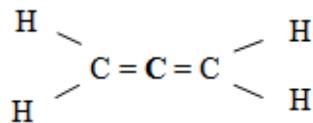
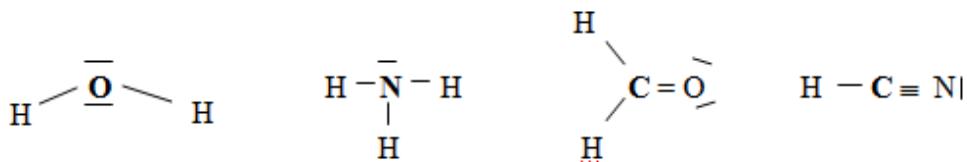
The two electrons that form the bond σ in the molecule H₂ are each located in atomic orbitals of type s, so the bond is a σ s-s


F₂:

The two electrons that form the σ bond in the F₂ molecule are each located in atomic orbitals of type p, so the bond is a σ p-p

HF: The Lewis structure of the HF molecule is: $\text{H} - \overline{\text{F}}$

The two electrons that form the σ bond in the HF molecule are located in atomic orbitals of type s (for hydrogen) and in a p orbital (for fluorine), so the bond is a σ s-p.



The double bond is formed by a σ bond and a π bond. The two electrons that form the σ bond in the O₂ molecule are each located in atomic orbitals of type p, so the bond is a σ p-p. Moreover, the two electrons that form the bond must necessarily be in a p-type atomic orbital, so the bond will be a π p-p.

Exercise n°8

The hybridization of atoms in molecules

The detailed Lewis structures will be

- In the H_2O molecule, the central oxygen atom forms two σ bonds and has two non-bonding doublets (equivalent to σ bonds), so it is sp^3 hybridised and the molecule will be spatial. Applying Gillespie's rule, the H_2O molecule will be an AX_2E_2 , therefore a V-shaped tetrahedral derivative (spatial molecule) with an angle $< 109^\circ 28'$.
- In the NH_3 molecule, the nitrogen central atom makes three σ bonds and has one non-bonding doublet, it is therefore sp^3 hybridised and the molecule will be spatial. Applying Gillespie, the NH_3 molecule will be an AX_3E_1 , therefore a trigonal pyramid with an angle $< 109^\circ 28'$.
- In the $\text{H}_2\text{C}=\text{O}$ molecule, the central carbon atom forms three σ bonds and one π bond, so it is sp^2 hybridised and the molecule will be planar. Applying Gillespie's method, the CH_2O molecule will be AX_3 , therefore a planar triangle with an angle equal to 120°
-

- In the **HCN** molecule, the central carbon atom forms two σ bonds and two π bonds, so it is **sp** hybridised and **the molecule will be linear**. Applying Gillespie's formula, the HCN molecule will be an **AX₂**, therefore axial with an angle equal to **180°**.
- In the molecule **H₂C = C = CH₂**, the central carbon atom forms two σ bonds and two π bonds, so it is **sp hybridised and the molecule will be linear**. Applying Gillespie's rule, the molecule H₂C = C = CH₂ will be an **AX₂**, therefore axial with an angle equal to **180°**.

MCQ

*Structure of matter
&
Chemical bonds*

MCQ 1

1- Let's say 2 grams of zinc (**Zn**: 63.38), 1.2×10^{22} atoms of argon (Ar: 39.94), and 2.4×10^{23} molecules of CH_4 [C: 12 **H**: 1]. The compound that contains the largest number of moles is:

A: zinc **B:** CH_4 **C:** argon **D:** No answer is true.

2- Let's say there are 0.45 moles of CaSO_4 (**Ca**: 40 **S**: 32 **O**: 16):

A: the mass of CaSO_4 is: 61.2g **B:** the number of molecules is: 7.2×10^{24}
C: the number of oxygen atoms is: 1.08×10^{24} **D:** NAT.

3- **A)** The flaw in Thomson's atomic model is the existence of the vacuum.
B) the energy of the electron on the orbit is constant in Bohr's model.
C) The nucleus with the highest binding energy is the most stable
D) The Rutherford model is the planetary model, and the flaw in Bohr's theory is that it is limited.

4 – 5 – 6 : Let the following table :

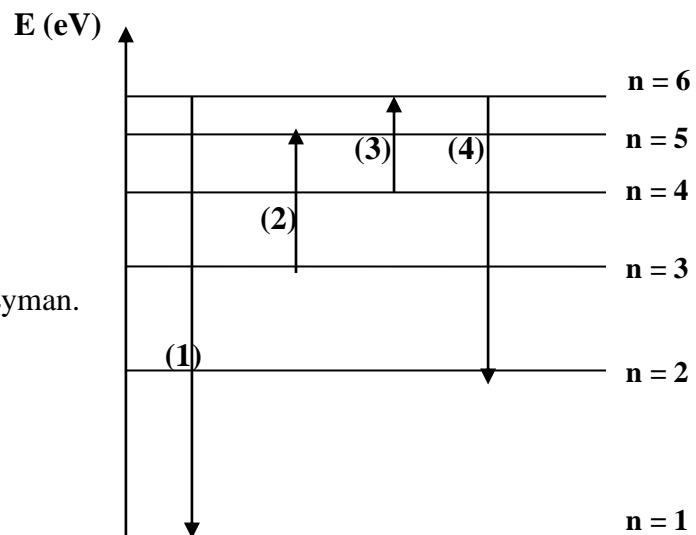
The nucleus	Experimental mass (amu)	Mass defect (Δm) (amu)	Bond energy (ΔE) (Mev)	Binding energy per nucleon (a)
^{16}O	A	0.01369	b	C
^{11}B	11.00656	D	e	F

Data: mp (*masse of proton*) = 1.007278 amu mn = 1.008665 amu (*mass of neutron*)

4- **A:** $a = 16.3471$ **B:** $b = 12.74$ **C:** $c = 0.97$ **D:** NAT (No answer is true)

5- **A:** $d = 0.08182$ **B:** $e = 67.174$ **C:** $f = 6.92$ **D:** NAT

6- **A:** oxygen is the most stable nucleus **B:** boron is the most stable nucleus **C:** oxygen is diamagnetic **D:** boron is monovalent.


7- Let's consider a particle with a mass of $m = 6.6 \times 10^{-17}$ kg, moving at a speed of $v = 1.3 \times 10^5$ m.s⁻¹; we denote λ its wavelength, ν its frequency, and ΔE its energy.

A: $\lambda = 7.71 \times 10^{-23}$ m. **B:** $\nu = 3.89 \times 10^{30}$ s⁻¹ **C:** $\Delta E = 2.57 \times 10^{-3}$ Joules **D:** $\lambda = 1/\nu$

8- Among the following photons, which one is likely to cause the transition of an electron from the second excited level of ${}^4\text{Be}^{3+}$ to the third excited level?

A: 5.95 eV **B:** 30 eV **C:** 12.68 eV **D:** 10.5 eV

9- Consider the following energy diagram for the hydrogen atom:

A : The ray(4) is in the visible.

B : the ray(3) is a Pfund ray

C : the line(1) is the 5th emission line of Lyman.

D : the ray(2) is in ultraviolet

10- **A :** The first line of a series corresponds to the shortest wavelength. **B:** The emission spectrum is discontinuous **C:** Ionization corresponds to the last line of a series **D :** $R_n = 10^4 R_a$

11-13 Let it be technetium ${}_{43}\text{Tc}$:

11- He possesses: **A:** two outer valence layers **B:** an inner valence layer **C:** the valence layer is: N **D:** Gives a stable ion X^{2+} .

12- Technetium is **A :** paramagnetic **B :** possesses a lower electronegativity and a larger atomic radius than those of ${}_{40}\text{Zr}$. **C :** belongs to the family VIIIB **D:** possesses a higher electronegativity and a smaller atomic radius than those of ${}_{40}\text{Zr}$.

13- The element X belongs to the Tc family and the 4th period, the atomic number of X is :

A : 41 **B :** 74 **C :** 25 **D :** NAT.

14- What are the correct statement(s): **A:** $n = 3; l = 0; m = 0; s = +1/2$

B: $n = 2; l = 2; m = 1; s = -1/2$ **C:** $n = 4; l = 1; m = -2; s = -1/2$ **D:** $n = 4; l = 2; m = 0; s = +1/2$

15- **A :** element 93Np is a transuranic. **B :** Non-metals are electropositive. **C :** the metallic character varies like the atomic radius in the periodic table. **D :** NAT.

16 – 17 The dipole moment of the LiH bond is equal to 5.88 Debyes, its ionic percentage is 77%.

Context: We are given: $e = 1.6 \cdot 10^{-19}$ coulombs ; 1 Debye = $0.33 \cdot 10^{-29}$ coulombs meters

16 - The partial load (coulombs) est : **A :** $1.20 \cdot 10^{-20}$ **B :** $1.23 \cdot 10^{-19}$ **C :** $1.68 \cdot 10^{-21}$ **D :** NAT

17- The length of the bond is: **A :** 1.57 \AA **B :** 1.67 \AA **C :** 1.47 \AA **D :** 1.86 \AA

18 – 20 Let the following molecules be: (the central atom in bold and underlined)

BF₃ NO₃⁻ H₂C=CH - F [₁H ₅B ₆C ₇N ₈O ₉F]

18 - **BF₃** : **A :** AX₃E **B :** does not respect the octet **C :** Hybridized sp² **D :** spatial

19- **NO₃⁻** : **A :** flat **B :** AX₃ **C :** exists in two conjugated forms **D :** makes three (σ) and one (π) bond

20- H₂C=CH - F : **A :** AX₃ **B :** linear **C :** conjugated molecule **D :** does not respect the octet

(NAT : No answer is true)

MCQ1 Solutions

	A	B	C	D
1		X		
2	X		X	
3		X		X
4		X		
5	X		X	
6		X		X
7	X	X	X	
8				X
9	X		X	
10		X	X	
11		X		X
12	X		X	X
13			X	
14	X			X
15	X		X	
16		X		
17	X			
18		X	X	
19	X	X	X	X
20	X		X	

MCQ2

1- A) The homogeneous mixture forms a phase. **B)** a pure compound is formed of identical atoms and non-identical molecules. **C)** The water-sand system is a homogeneous mixture. **D)** the mass of a molecule of NaOH is $6.64 \cdot 10^{-23}$ g (Na : 23g O : 16g H : 1g) **E)** diamond and carbon are simple pure substances.

2- Let's say there is a mass of 4 g of calcium oxalate. CaC_2O_4 (Ca : 40g C : 12g), it corresponds to :

A) $3.76 \cdot 10^{22}$ atoms of oxygen. **B)** 0.03125 moles of CaC_2O_4 . **C)** 0.01251 moles.
D) $7.52 \cdot 10^{22}$ atoms of carbon. **E)** $1.8810 \cdot 10^{22}$ molecules of CaC_2O_4 .

3- Let the following nucleuses:

Nucleus	a	b	c	d	e	f
Mass number	36	56	40	58	35	40
number of neutrons	18	30	20	32	18	22

A) (c- f) possess the same number of **B)** (b - f) isotones **C)** (a - f) isotopes **D)** (b-d) have the same number of protons **E)** (b - e) isobars.

4 – 7 Let the nucleus $^{235}_{92}\text{U}$ its experimental mass is: 234.9942 amu.

(mp = 1.007278 amu, mn = 1.008665 amu).

4- The theoretical mass (amu) is :

A) 233.2564 **B)** 231.9210 **C)** 236.9086 **D)** 235.1584 **E)** 234.224

5- The mass defect (amu) is :

A) 0.0428 **B)** 1.0056 **C)** 0.0235 **D)** 1.3636 **E)** 1.9144

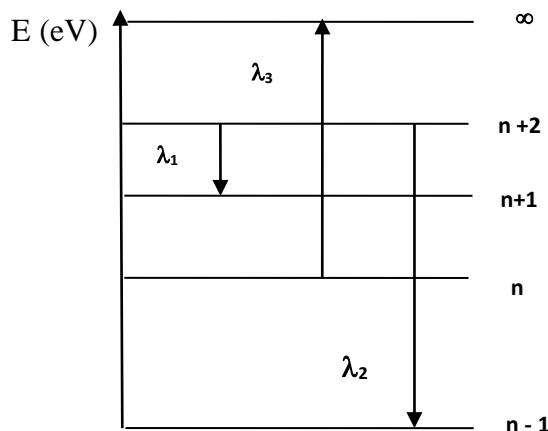
6) The binding energy in Joules is:

A) $2.42 \cdot 10^{-11}$ B) $3.55 \cdot 10^{-10}$ C) $1.02 \cdot 10^{-11}$ D) $2.86 \cdot 10^{-10}$ E) $2.02 \cdot 10^{-11}$

7- The binding energy per nucleon (Mev/nucleon) is:

A) 7.58 B) 5.78 C) 7.85 D) 5.87 E) 8.75

8- A) The emission spectrum is non-continuous in the Rutherford atom..


B) The relationship $r_n = r_0 n^2$ allows for the calculation of the radius of a nucleus.

C) Matter is lacunar because $R_a = 104 R_n$

D) There are four Bohr postulates.

E) Thompson's atomic model is the planetary model.

9 – 14 Let the transitions of the electron of a hydrogen atom be represented on the energy diagram.:

Knowing that $(n + 1)$ corresponds to the fundamental state of Brackett:

9 - The radius of the $(n+2)$ orbit in A° is :

A) 12.35 B) 12.53 C) 13.55 D) 13.52 E) 13.25

10 - The energy of the orbit (n) in eV is:

A) - 3.4 B) - 1.51 C) -0.85 D) -13.6 E) - 0.544

11 - The speed of the electron on the $(n-1)$ orbit in (m/s) is:

A) $2.34 \cdot 10^4$ B) $1.42 \cdot 10^5$ C) $1.09 \cdot 10^6$ D) $2.89 \cdot 10^6$ E) $1.33 \cdot 10^5$

12 - A) $\lambda_1 = 40404 \text{ \AA}^\circ$ B) $\lambda_1 = 18701 \text{ \AA}^\circ$ C) λ_1 is in IR
D) λ_1 corresponds to the first emission line of Brackett E) $\Delta E(1) = -4.9 \cdot 10^{-20} \text{ Joules}$

13 - A) $\lambda_2 = 4632 \text{ \AA}^\circ$ B) $\lambda_2 = 4329 \text{ \AA}^\circ$ C) λ_2 is found in UV
D) λ_2 corresponds to the 3rd Paschen emission line E) $\Delta E(2) = -2.856 \text{ eV}$

14 -

A) (n+2) corresponds to the 2nd excited state of Paschen
B) λ_2 is the 4th emission line of Balmer
C) λ_3 is the last Paschen line
D) $\Delta E(3) = -1.51 \text{ eV}$
E) λ_3 corresponds to the ionization line.

15) The ionization energy of a hydrogenoid from the ground state is 54.4 eV. The atomic number (Z) of the hydrogenoid is:

A) 5 B) 3 C) 4 D) 2 E) 1

16 - For the quantum number n = 4, it corresponds:

A) 18 electrons B) 32 electrons C) 3 under layers D) 18 atomic orbitals E) 16 OA

17 - The number of electrons characterized by quantum numbers: n = 3, m = 0 est :

A) 2 B) 10 C) 6 D) 18 E) 12

18 - Let the following atomic orbitals:

(a) $\Psi(3,0,0)$ (b) $\Psi(2,2,0)$ (c) $\Psi(0,0,0)$ (d) $\Psi(2,1,-1)$ (e) $\Psi(3,1,-2)$ (f) $\Psi(4,3,0)$

A) (a - b) exist B) (b - c) don't exist C) (e) exists D) (d) = 2p₁ E) (f) = 4d₀

19) Let the electronic structure of Y³⁺: [Kr] 5s² 4d¹⁰ 5p¹

A) The atomic number of Y is: 52
B) Y has 46 core electrons and 3 valence electrons.
C) He is bivalent and paramagnetic.
D) He belongs to the block d.
E) He has 2 external valence subshells and one internal valence subshell.

20 - A) The periodic table is composed of 32 columns and 7 periods
B) The periodic table is divided into four blocks
C) the lanthanides correspond to the filling of the 5f
D) Boron and silicon are semiconductors
E) The triad is composed of three columns.

21 – 22 Let the elements : $_{55}\text{Cs}$; $_{35}\text{Br}$; $_{19}\text{K}$; $_{24}\text{Cr}$

21- The element with the greatest metallic character is:

A) Br **B)** K **C)** Cs **D)** Cr **E)** Cs et Cr

22- A) Br is a non-metal
B) All the elements are monovalent
C) Cs is the least electronegative
D) The Cr^{+4} ion exists
E) Br has the smallest atomic radius

23 - Let's consider the HF molecule, its dipole moment is 0.88 Debye and $d = 1.63\text{Å}$.

A) The moment is oriented from F to H
B) The bond is a σ_{s-p}
C) The bond is a σ_{p-p}
D) 11.13% of the bond is ionic
E) 13.11% of the bond is ionic

24 -25 – 26 – 27 Let the elements : PF_3 SO_3 H_3O^+ NO_2^- (*central atom in bold*)

24) PF_3 : **A)** AX_3E_1 **B)** AX_2E_2 **C)** $\alpha < 120^\circ$ **D)** axial **E)** triangular pyramid

25) SO_3 : **A)** AX_2E_2 **B)** equilateral triangle **C)** AX_3 **D)** AX_3E_1 **E)** axial

26) H_3O^+ : **A)** AX_4 **B)** AX_2E_2 **C)** AX_3 **D)** there is a dative link **E)** triangle

27) NO_2^- : **A)** Tetrahedron **B)** AX_3E_1 **C)** AX_2E_1 **D)** $\alpha < 109^\circ 28'$ **E)** $\alpha < 120^\circ$


Data : $_{1}\text{H}$ $_{7}\text{N}$ $_{8}\text{O}$ $_{9}\text{F}$ $_{15}\text{P}$ $_{16}\text{S}$

MCQ2 Solutions

	A	B	C	D	E
1	X			X	X
2		X			X
3	X		X	X	
4			X		
5					X
6				X	
7	X				
8			X	X	
9					X
10		X			
11			X		
12	X			X	X
13		X			X
14	X		X		X
15				X	
16		X			X
17			X		
18		X		X	
19	X		X		X
20		X		X	X
21			X		
22	X		X		X
23		X		X	
24	X				X
25		X	X		
26				X	
27			X		X

MCQ3

1- Let the following elements be:

(a) (b) (c) (d) (e)

- A) (c - e) have the same number of protons
- B) (a - e) have the same number of electrons
- C) (a - e) have the same number of neutrons
- D) (d - b) have the same number of protons

2- In 0,1 mole of $\text{Ca}_3(\text{PO}_4)_2$ there is: (Ca : 40 g ; P : 31 g ; O : 16 g)

- A) 4.818×10^{23} oxygen atoms
- B) 1.204×10^{23} molecules of $\text{Ca}_3(\text{PO}_4)_2$
- C) 6.023×10^{22} calcium atoms
- D) 31 g of $\text{Ca}_3(\text{PO}_4)_2$

3- A) The homogeneous mixture is composed of identical molecules

- B) The flaw of Thomson's atom is the absence of the nucleus
- C) Bohr's 3rd postulate allows us to calculate the speed of the electron on an orbit
- D) The relation $R_a = 10^4 R_n$ indicates that matter is lacunar.

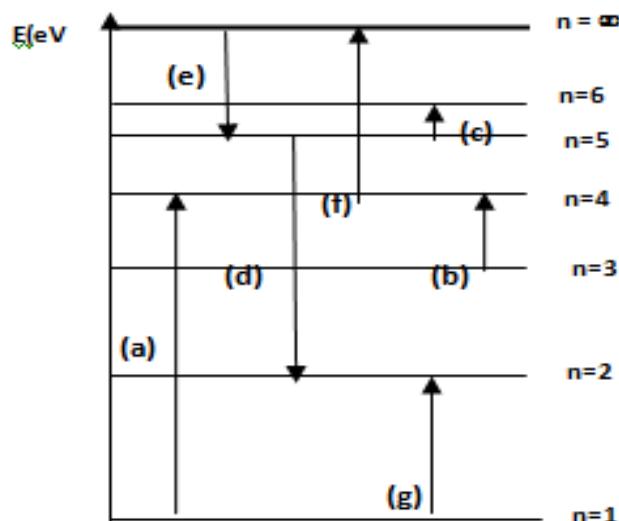
4-A) The chemical element exists in nature as a mixture of isotopes.

- B) Isotones represent the same element with the same number of neutrons..
- C) Isobars represent different elements with the same mass number.
- D) Isotopes have the same number of protons and the same number of neutrons.

5 - The X nucleus has a binding energy per nucleon equal to: 6.92 MeV/nucleon, a mass defect equal to: 0.08182 amu, and an experimental mass of 11.00656 amu.

We are given $m_p = 1.007278$ amu and $m_n = 1.008665$ amu.

- A) The mass number is 14 and the atomic number is 7
- B) The mass number is 11 and the atomic number is 5
- C) The mass number is 14 and the atomic number is 9
- D) The mass number is 11 and the atomic number is 4.


6 - Let us consider the electron of hydrogen in orbit 4, with an electron mass of $9.1 \times 10^{-31} \text{ kg}$

- A) The radius of the orbit is 8.48 \AA
- B) The energy of the orbit is 0.85 eV
- C) The ionization energy from this orbit is: -0.85 eV
- D) This orbit corresponds to the 3rd excited state.

7- The protons in the nucleus do not repel each other because of:

- A) kinetic energy
- B) potential energy
- C) cohesive energy
- D) ionization energy

8 – 9 Let the transitions be as shown in the following energy diagram: ($R_h = 1.1 \times 10^7 \text{ m}^{-1}$)

8- A) (d) is the fourth Balmer emission line

B) $\Delta E(b) = 1.056 \times 10^{-19} \text{ Joules}$

C) (f) is the ionization line of the Brackett series

D) (e) is Pfund's last emission line.

9- A) $\lambda(d) = 4329 \text{ \AA}$

B) (e - c) are in the far infrared range

C) (g) corresponds to the longest wavelength produced in the Lyman series

D) The wave number $\nu(a) = 1.03 \times 10^5 \text{ m}^{-1}$

10- The wavelength associated with an electron is 6.61 \AA , and the speed (m/s) of the e^- will

- A) 2.30×10^6
- B) 3.31×10^6
- C) 3.13×10^6
- D) 1.10×10^6

11- Let : **a** (${}^3\text{Li}^+$) **b** (${}^4\text{Be}^{3+}$) **c** (${}^5\text{B}^{3+}$) **d** (${}^3\text{Li}^{2+}$) **e** (${}^2\text{He}^{2+}$) **f** (${}^5\text{B}^{2+}$) **g** (${}^5\text{Be}^{4+}$) , Hydrogenoids are:

A) (a-d-e) **B)** (b – d – g) **C)** (c – e - f) **D)** (a – f – e)

12- Given the values of the following quantum numbers, indicate which ones are impossible..

a) $n=2$ $l=1$ $m=0$ $S=+3/2$
b) $n=3$ $l=2$ $m=0$ $S=+1/2$
c) $n=3$ $l=3$ $m=-2$ $S=+1/2$
d) $n=4$ $l=1$ $m=-4$ $S=+1/2$
e) $n=4$ $l=1$ $m=-1$ $S=+1/2$

A) (a-d- e) **B)** (a - b – c) **C)** (c - e- d) **D)** (a - c - d)

13- Let's take element ${}^{29}\text{Cu}$, The number of electrons characterized by quantum number $m=+1$ is:

A) 6 **B)** 14 **C)** 8 **D)** 10

14 – 17 Let the elements be: ${}^{28}\text{Ni}$; ${}^{23}\text{V}$; ${}^{51}\text{Sb}$; ${}^{38}\text{Sr}$

A) In the periodic table, elements are classified according to their atomic weight.
B) Sr is an alkaline earth metal
C) All elements are paramagnetic.
D) Ni is bivalent

15- **A)** Ni belongs to the triad
B) V and Sr have the same valence shell
C) V and Sb have the same number of valence electrons
D) Sb belongs to the nitrogen family (${}^7\text{N}$)

16- **A)** In the periodic table, the atomic number varies as the metallic character varies.
B) the radius: $\text{ra(V)} > \text{ra(Ni)}$
C) Electronegativity: $\text{En(Sr)} > \text{En(Sb)}$
D) Sb is a metalloid.

17- A) (V^{2+}) is more stable than (V^{5+})
B) the elements in block f are the transuranic elements
C) (Sb) have 46 core electrons
D) The element lanthanum belongs to block f.

18- X^{3+} has the structure of $_{49}In$:

A) $Z(X) = 46$
B) X belongs to the family VIA
C) X^{2-} is the stable ion of X.
D) X is a metal.

19- If 63% of the H-X bond is polarized covalent and the bond length is 0.72A° ($1\text{Debye} = 0.33 \cdot 10^{-29}$):

A) the partial ionic character of the bond will be 37%
B) partial charge (δ) will be $2.95 \cdot 10^{-20}$ coulombs
C) The dipole moment will be 1.29 Debyes
D) No answer is true

20) Let the ion NO_3^- (7N ; 8O) :

A) the molecule is axial
B) Nitrogen forms three σ bonds and one π bond.
C) the three oxygen atoms are surrounded by two non-bonding doublets
D) It is an AX_3 .

21- Let us consider the molecule HClO_3 (1H ; 17Cl) :

A) The bond H-Cl is a σ_{sp}
B) There are three dative bonds and one polarised covalent bond.
C) the angle between the bonds is $109^\circ 28'$
D) It is an $\text{AX}_3 \text{E}_1$.

MCQ3 Solutions

	A	B	C	D
1	X	X	X	
2	X			X
3		X		X
4	X		X	
5		X		
6	X			X
7			X	
8		X	X	
9	X		X	
10				X
11		X		
12				X
13	X			
14		X		X
15	X		X	X
16		X		X
17			X	X
18		X	X	
19	X		X	
20		X		X
21	X	X	X	

MCQ4

1- Among the following samples, which one contains $2 \cdot 10^{23}$ atoms ?

A) 8g of O₂ B) 12g of He C) 8g of C D) 3g of Be E) 30g of F₂

(Data : O : 16 ; Be : 9 ; C : 12 ; He : 4 ; F : 19).

2- Among the following representations, which ones characterize isotopes?

1) 20 protons and 20 neutrons

2) 21 protons and 19 neutrons

3) 18 protons and 22 neutrons

4) 20 protons and 22 neutrons

5) 21 protons and 20 neutrons

A: (1, 2,3) B : (1, 4) et (2, 5) C : (1, 5) D : (3, 4) E : (3, 4) et (1, 5)

3-

A) The protons in the nucleus do not repel each other because of kinetic energy..

B) The relationship $R_n = 10^{-4} Ra$ indicates that the material is incomplete and H₂ is a simple pure substance.

C) Water-sugar homogeneous mixture and ozone O₃ is a pure compound.

D) Rutherford's atomic model is applicable to hydrogenic species

E) Isobars have the same mass number and isotones have the same number of neutrons.

4-

A) The mass of a molecule of C₂H₅OH (H= 1, C = 12, O = 16) is equal to 46 amu.

B) The mass of a molecule of C₂H₅OH is $7,63 \cdot 10^{-24}$ g.

C) In 60g de C₂H₅OH we find : 1.304 mole of C₂H₅OH and $7.853 \cdot 10^{23}$ molecules of C₂H₅OH.

D) ⁵⁹₂₉Co has 29 protons and 32 neutrons et ²⁷₁₃Al³⁺ has 13 protons and 13 electrons.

E) amu is 1 / 12th of the mass of a carbon 13, and CO₂ is a pure compound.

5-6 Let the nucleus of uranium: $^{235}_{92}\text{U}$

Given: $m_p = 1.007278 \text{ amu}$, $m_n = 1.008665 \text{ amu}$, $M_{\text{exp de U}} = 234.9942 \text{ amu}$
 $a(\text{Xe}) = 8.06 \text{ MeV/nucleons}$

5-

- A)** The radius of the U nucleus is $7.827 \cdot 10^{-5} \text{ A}^\circ$
- B)** The theoretical mass of the nucleus is 236.9086 amu.
- C)** The theoretical mass of the U nucleus is 235.3045 amu.
- D)** The radius is $8.727 \cdot 10^{-5} \text{ A}^\circ$
- E)** The mass defect is the mass gained during the formation of the nucleus

6-

- A)** Xe is the most stable nucleus
- B)** The mass defect of U is 0.9144 amu
- C)** The binding energy of U is 1782.3064 MeV
- D)** The binding energy stabilizes the nucleus
- E)** The cohesion energy destabilizes the nucleus.

7- . Let's consider an electron of the hydrogen atom in the 5th excited state:

- A)** The radius of the orbit is: 18.09 A°
- B)** The energy of the orbit is: -0.37 eV
- C)** The ionization energy from this orbit is: 0.554 eV
- D)** To transition from this orbit to the Balmer ground state, an energy of -3.03 eV is required.
- E)** The lines of the Pfund series are found in the far IR.

8- To ionize the element ${}^3\text{Li}^{2+}$ from orbit 4, we need radiation with a frequency ν that is :
 $(h = 6.62 \cdot 10^{-34} \text{ J s}^{-1})$

- A)** $1.848 \cdot 10^{15} \text{ s}^{-1}$ **B)** $18.48 \cdot 10^{-14} \text{ s}^{-1}$ **C)** $1.484 \cdot 10^{16} \text{ s}^{-1}$ **D)** $14.84 \cdot 10^{-16} \text{ s}^{-1}$ **E)** $1.848 \cdot 10^{14} \text{ s}^{-1}$

9- The transition of an electron in a hydrogen atom from the ground state to the excited state requires 12.084 eV. How much energy (in kJ) will be required for the transition of one mole of electrons?

A) 728 kJ **B)** 984.2 kJ **C)** 1036 kJ **D)** 1164.51 kJ **E)** 1312.7 kJ

10- Among the following combinations of quantum number values, indicate those that are impossible :

1) $n = 2$; $\ell = 1$; $m = -1$; $s = +3/2$ 2) $n = 3$; $\ell = 2$; $m = 0$; $s = +1/2$
3) $n = 3$; $\ell = 3$; $m = -2$; $s = -1/2$ 4) $n = 4$; $\ell = 3$; $m = -3$; $s = +1/2$
5) $n = 4$; $\ell = -1$; $m = -1$; $s = +1/2$

A) (1, 3) **B)** (3, 4, 5) **C)** (2, 4) **D)** (3, 5) **E)** (1, 2, 5)

11- In an atom, what is the maximum number of electrons that can be characterized by the quantum state $n = 4$, $m = 1$ and $s = +1/2$.

A) 6 **B)** 3 **C)** 2 **D)** 4 **E)** 5

12-

A) For an electron in the d subshell, m can have the value 3
B) An electron characterized by the quantum state ($n = 4$, $\ell = 3$, $m = -1$, $s = +1/2$) is located on the N shell and in the $4f_1$
C) If $n = 3$, m can be equal to -2
D) Helium and arsenic are semiconductors
E) Element $t_{93}Np$ is a transuranic element

13- The atomic number (Z) of atoms that have less than 10 electrons and possess a single unpaired electron in the ground state is:

A) 1, 3, 5, 9 **B)** 1, 5, 7, 9 **C)** 1, 3, 5, 7 **D)** 1, 3, 7, 9 **E)** NAT (No answer is true)

14- A) Halogens are electropositive.

B) The elements of the f-block are the inner transition elements

C) The alkaline earth metals give divalent cations.

- D) The elements with $Z \geq 89$ are the lanthanides
- E) The elements of the triad possess similar chemical properties.

15-16 Let the following elements be

X: (Ar) 4s²3d¹⁰4p⁴ Y: (Kr) 5s²4d¹⁰5p¹ ₃₁Ga and ₄₂Mo

15-

- A)** X and Mo belong to the same family.
- B)** Y and Ga have the same number of valence electrons
- C)** Y and Mo have the same number of core electrons
- D)** Y and Ga are monovalent
- E)** Y and Mo have the same valence shell and 4d is their inner valence subshell.

16- A) The atomic radius $ra(Y) > ra(Ga)$

- B)** Ga is a post-transition metal and Mo is an outer transition metal
- C)** X^{-2} and Mo^+ are stable ions.
- D)** The most electronegative element is Y and Mo has the greatest metallic character.
- E)** All the elements are diamagnetic.

17-18 The dipole moment of the HCl bond is equal to 5.88 Debyes, its ionic percentage is 77%. We are given: 1 Debyes = 0.33×10^{-29} coulombs meters

17 - The partial charge (coulombs) is:

A) $1.20 \cdot 10^{-20}$ B) $1.83 \cdot 10^{-21}$ C) $1.68 \cdot 10^{-21}$ D) $1.23 \cdot 10^{-19}$ E) $1.20 \cdot 10^{-19}$

18- The length of the bond (A°) is :

A) 1.77 B) 1.57 C) 1.47 D) 1.86 E) 1.67

19- A) The ozone molecule O_3 is of the AX_2E_1 type.

B) The SO_4^{-2} ion is planar.

C) There is at least one dative bond in SO_4^{2-}

D The Li H bond is an σ_{s-p} bond.

E) H_2O and HClO have the same geometry.

Given : ${}_1^1\text{H}$ ${}_3^7\text{Li}$ ${}_8^{18}\text{O}$ ${}_16^{32}\text{S}$ ${}_17^{35}\text{Cl}$)

MCQ4 Solutions

	A	B	C	D	E
1				X	
2		X			
3		X			X
4	X		X		
5		X		X	
6	X		X	X	
7		X		X	X
8	X				
9				X	
10	X			X	
11		X			
12		X	X		X
13	X				
14		X	X		X
15		X		X	X
16	X	X	X		
17				X	
18		X			
19	X		X		X

MCQ5

1) Let us consider the compounds listed in the following table:

a	b	c	d	e	f	g	h	i	j
^{14}C 6	NaOH Solution	^{14}N 7	water	Sea water	CO_2	^{12}B 5	Zn	Mineral water	water + Petrol

A) (a-c) isobars and (c-g) isotops

B) (d-e-i) homogeneous mixtures

C) (a-c-g-h) simple pure substances

D) (d-f) pure compound substances

E) No answer is true.

2) 1.24×10^{22} molecules of FeSO_4 correspond to : (Fe : 56 S : 32 O : 16)

A) 1.24×10^{22} sulphur atoms

B) 2.129 g of FeSO_4

C) 0.02 moles of FeSO_4

D) 4.96×10^{23} oxygen atoms.

E) No answer is true.

3) Let X be the nucleus, the mass of protons is 4.029112 amu, the mass of neutrons is 5.043325 amu, and the actual mass is 9.04508 amu..

We give: $mp = 1.007278$ amu ; $mn = 1.008665$ amu.

A) The mass defect is 0.027357 amu

B) The binding energy is 28.469 MeV

C) The binding energy is 4.087×10^{-12} joules

D) The binding energy per nucleon is: 2.82 MeV/nucléons

E) The radius of the nucleus is: 4.94×10^{-15} m.

4 – 5 The electron of the hydrogen atom in the 6th excited state returns to the Balmer ground state.

. (Mass of e^- : $9.1 \cdot 10^{-31}$ Kg)

4)

- A)** The energy corresponding to this transition is: - 13.122 eV
- B)** The wavelength of the line of this transition is: 3959 \AA .
- C)** This line is in UV
- D)** The speed of the electron in the 6th excited state is: $3.122 \cdot 10^5$ m/s
- E)** None of the answers are true.

5)

- A)** The frequency of this line is : $2.51 \cdot 10^6 \text{ s}^{-1}$
- B)** The wavenumber is: $7.54 \cdot 10^{14} \text{ m}^{-1}$
- C)** The ionization energy from the 6th excited state is : 0.277 eV
- D)** The radius of the 6th excited state is 25.97 \AA
- E)** None of the answers are true.

6)

- A)** The hydrogenoid is an ion
- B)** There are 4 postulates of Bohr
- C)** De Broglie's relation is : $\lambda = h / mv$
- D)** Bohr's theory is valid for all atoms
- E)** the electrons of the same atomic orbital have the same quantum numbers

7) How many electrons are characterized by the following quantum numbers:

- (a)** $n=4 \quad l=3$ **(b)** $n=3$ **(c)** $n=4 \quad m=0$ **(d)** $n=4 \quad s=+1/2$
- A)** a (14 e-) **B)** b (8 e-) **C)** c (10 e-) **D)** d (16 e-) **E)** None of the answers are true.
- 8)** Among the following compounds, which ones are paramagnetic?
- A)** $_{12}\text{Mg}^{2+}$ **B)** $_{17}\text{Cl}^-$ **C)** $_{3}\text{Li}^{2+}$ **D)** $_{19}\text{K}$ **E)** None of the answers are true

9 – 11 Let the elements: ^{39}Y ^{46}Pd ^{51}Sb

9)

- A)** ^{51}Sb is an alkali and ^{46}Pd belongs to the triads
- B)** Ei (Sb) > Ei (Pd)
- C)** Pd has one inner valence sublayer and two outer valence sublayers
- D)** Y and Pd are transitional elements
- E)** None of the answers are true.

10)

- A)** Pd is bivalent and Sb has 46 core electrons.
- B)** Sb can form Sb^{3+} and Sb^{5+} ions.
- C)** In the Y series, the lowest energy valence sublayer is 5s and Y is monovalent.
- D)** ra (Pd) > ra (Y)
- E)** None of the answers are true.

11)

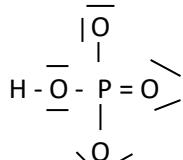
- A)** Sb belongs to IVA
- B)** Pd belongs to VIIIB
- C)** Y belongs to IIA
- D)** Sb is a semiconductor
- E)** None of the answers are true.

12)

- A)** The radius of the cation is greater than the radius of the atom.
- B)** Alkali metals are called semiconductors.
- C)** Metallic character increases from top to bottom in a column.
- D)** The elements in the f block are the inner transition metals.
- E)** The actinides correspond to the filling of the 5f orbital and the lanthanides to the filling of the 4f orbital.

13 – 15 Let the ions be: CO_3^{2-} NO_2^- HPO_4^{2-} $[\text{H};_6\text{C};_7\text{N};_8\text{O};_{15}\text{P}]$

13) For the ion CO_3^{2-} :


- A)** C (sp^2) and the three oxygen atoms (sp^3)
- B)** the molecule is spatial.
- C)** AX_3
- D)** There is a dative connection.
- E)** None of the answers are true.

14) For the ion NO_2^- :

- A)** the molecule is flat
- B)** nitrogen makes $3(\sigma)$ and $1(\pi)$
- C)** The ion NO_3^- exists
- D)** AX_2E
- E)** None of the answers are true.

15) HPO_4^{2-} : **A)** Lewis is:

- B)** flat molecule

- C)** AX_4

- D)** phosphorus (P) makes $3(\sigma)$ and a dative connection

- E)** None of the answers are true.

16)

- A)** the metallic bond is delocalised
- B)** the covalent bond is stronger than the metallic bond
- C)** conjugation destabilises the molecules
- D)** the dipole moment is oriented from the (+) pole towards the (-) pole
- E)** If the % CI (HCl) = 35%, then 65% of the bond is ionic.

MCQ5 Solutions

	A	B	C	D	E
1			X	X	
2	X		X	X	
3	X		X	X	
4		X		X	
5			X	X	
6	X		X		
7	X			X	
8			X	X	
9		X	X	X	
10	X	X	X		
11		X		X	
12			X	X	
13			X		
14	X		X	X	
15			X	X	
16	X	X		X	
17		X		X	
18	X		X		
19	X		X	X	
20	X		X		
21		X			
22	X			X	

MCQ

General Chemistry
&
Organic Chemistry

MCQ (a)

NAT (None answer is true)

1- Consider the atom $^{63}_{27}\text{Co}$ From the following statements, select the correct one(s):

- a.** This atom consists of 27 neutrons, 36 protons, 36 electrons.
- b.** This atom is made up of 63 nucleons, 27 protons, 27 electrons.
- c.** This atom is made up of 27 neutrons, 63 nucleons, 36 electrons.
- d.** This atom is made up of 36 neutrons, 63 nucleons, 27 protons.

2- What is / are the possible serie / s of quantum number values?

- a.** $n = 2 \quad l = 0 \quad m = 0$
- b.** $n = 2 \quad l = 2 \quad m = 0$
- c.** $n = 2 \quad l = 1 \quad m = -1$
- d.** $n = 3 \quad l = 1 \quad m = -2$

3 - Knowing that $Z(\text{Fe}) = 26$, check the correct statement(s) :

- a.** The Fe^{3+} ion has 6 electrons in its d orbitals.
- b.** The Fe^{2+} ion has 6 electrons in its d orbitals.
- c.** The configuration of the Fe^{2+} is $[\text{Ar}] 3\text{d}^5 4\text{s}^1$.
- d.** (NAT)

4-Among the following statements, which ones are true?

- a.** In a polarized bond between two atoms, the most electronegative element has an excess of negative charge.
- b.** In the Pauling scale, the most electronegative element is fluorine.
- c.** The triad corresponds to family VIIa.
- d.** Electronegativity characterizes the tendency of an atom to repel electrons.

5- What is / are the correct statement / s regarding the nitrite ion? NO_2^-

- a.** The nitrogen atom is sp^2 hybridized.
- b.** The negative charge is localized on the nitrogen atom.
- c.** The nitrite ion has a linear geometry.
- d.** NAT

6- What is the unit of a reaction rate?

a. mol/L . s b. s⁻¹ c. it depends on the partial orders d. mol/ L. s⁻¹

7- The decomposition of an antibiotic in water at 20 °C is a first-order reaction. Determine the antibiotic concentration after 3 months, knowing that the half-life and the initial antibiotic concentration are respectively 0.420 months and $6 \cdot 10^{-3}$ mol/L.

a. $3 \cdot 9 \cdot 10^{-3}$ mol/L b. $4 \cdot 34 \cdot 10^{-5}$ mol/L c. $5 \cdot 10^{-3}$ mol/L d. $5 \cdot 98 \cdot 10^{-5}$ mol/L

8- a. Enzymes are the catalysts of life.

b. A catalyst does not undergo a net chemical transformation in the overall balance.

c. A catalyst increases the kinetic energy of the reactants. d. NAT.

9- Which of the following statements is/are correct?

a. An isolated system transfers neither matter nor energy with the outside.
b. A state function is independent of the path taken between the initial state and the final state.
c. A reaction with a positive enthalpy change ($\Delta H_r > 0$) is classified as exothermic.
d. NAT

10. We consider the reaction of the formation of gaseous ammonia at 298° K :

Data à 298°	NH ₃ (g)	H ₂ (g)	N ₂ (g)
S° (J /K mol)	192. 5	191. 6	130. 7
ΔH _f ° (Kj/:mole)	- 46. 1	-	-

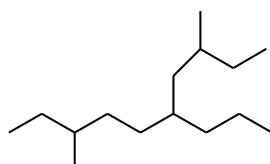
The standard free enthalpy change in kJ/mole à 298° K is:

a. 3.309 b. 4.409 c. -3.305 d. - 4.406

11. Consider the following series of nitrogen compounds: N₂, NO, HNO₂ et NO₃⁻. Among the following propositions giving respectively the oxidation numbers (or degrees) of nitrogen in these different species, indicate the correct proposition.

a. 0, +II, +III, +IV b. +I, +II, +III, +V c. 0, +II, +III, +V d. NAT

12. a. The algebraic sum of the oxidation numbers (or degrees) of the different elements present in an uncharged chemical species is equal to zero.


b. The standard hydrogen electrode has a potential equal to zero if :

$p(H_2) = 1 \text{ atm}$ and $[H_3O^+] = 1 \text{ mole/l}$

c. Fluorine is the most powerful reducing agent.

d. An oxidation corresponds to a decrease in the oxidation number (or degree).

13. Consider the following molecule:

His name according to the IUPAC is:

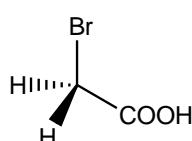
a. 3,8-dimethyl-6-propyl Decane

b. 3,8-dimethyl-6-propyl Heptane

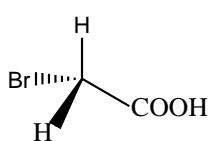
c. 3-methyl-6-butyl Nonane

d. 3,8-dimethyl-5-propyl Decane

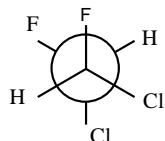
14. Let the following compound be : $\text{HOCH}_2\text{-CHOH-CHCl-CHOH-CHO}$:

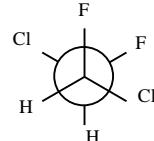

a. the name is: 3-chloro-1,2,4-trihydroxy Pentan-6-al

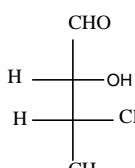
b. it has 4 asymmetric carbons

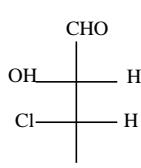

c. the name is: 3-chloro-2,4,5-trihydroxy Pentanal

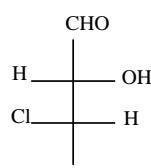
d. it has 3 asymmetric carbons

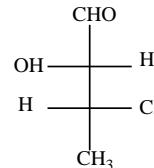

15 – 19 Let the following pairs of molecules be :

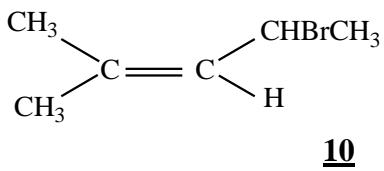
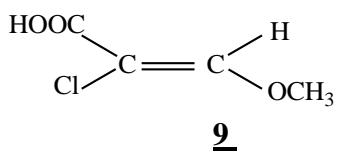

1


2


3


4


5



6

7

8

15. a. the configuration of 9 is (Z)

b. the configuration of 10 is (E)

c. the molecule 10 is chiral d. NAT

16. a. 1-2 are enantiomers

b. 1-2 are diastereomers

c. 1-2 are identical d. NAT

17. a. 3-4 are identical

b. 3-4 are compliant

c. 3-4 are enantiomers d. NAT

18. The configuration of 5 is : a. (2S, 3S) b. (2S, 3R) c. (2R, 3R) d. (2R, 3S)

19. a. (5-6) are diastereomers

b. (7-8) are enantiomers

c. (6-7) are diastereomers

d. (6-8) are identical

20. d'énantiomères a molecule with 3 asymmetric carbons can have:

a. 8 stereo-isomers and 4 pairs of enantiomers

b. 16 stereo-isomers and 8 pairs of enantiomers

c. 32 stereo-isomers and 16 pairs of enantiomers

d. 4 stereo-isomers and 2 pairs of enantiomers.

Data : ${}_1\text{H}$ ${}_6\text{C}$ ${}_7\text{N}$ ${}_8\text{O}$ ${}^{17}\text{Cl}$ ${}^{35}\text{Br}$

MCQ (a) Solutions

	A	B	C	D
1		X		X
2	X		X	
3		X		
4	X	X		
5	X			
6			X	
7		X		
8	X	X	X	
9	X	X		
10	X			
11			X	
12	X	X		
13				X
14		X	X	
15	X		X	
16			X	
17		X		
18		X		
19		X	X	
20	X			

MCQ (b)

1 : Among the following photons, which one is likely to cause the transition of an electron from the second excited level to the third excited level of ${}^4\text{Be}^{3+}$?

A) 10.5 J **B)** 30 eV **C)** $1.68 \cdot 10^{-18} \text{ eV}$ **D)** 10.5 eV **E)** 5.95 eV

2 : Give the number of valence electrons of these elements: a) ${}^8\text{O}$ b) ${}^{20}\text{Ca}^+$ c) ${}^{56}\text{Ba}$

A) 2 -1 -0 **B)** 6- 2- 2 **C)** 4 -0 -2 **D)** 4 -1 -2 **E)** 6 -1 -2

3 : What is the De Broglie wavelength (in meters) of an electron moving at a speed of $0.75 \cdot 10^7 \text{ m/s}$?

Data : m (electron) = $9.1 \cdot 10^{-31} \text{ kg}$; Planck constant $h = 6.62 \cdot 10^{-34} \text{ J.s}$

A) $9.7 \cdot 10^{-10} \text{ m}$ **B)** $5.5 \cdot 10^{-10} \text{ m}$ **C)** $9.7 \cdot 10^{-11} \text{ m}$ **D)** $5.5 \cdot 10^{-11} \text{ m}$ **E)** None of these propositions is correct.

4 : Which configuration(s) is (are) correct? :

(A)				
(B)				
(C)				
(D)				

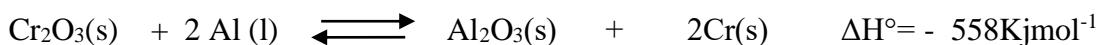
E) None of these propositions is correct.

5 : A) The flaw in Thomson's atomic model is the existence of the vacuum.
B) the energy of the electron on the orbit is constant in Bohr's model.
C) The nucleus with the highest binding energy is the most stable.
(D) The Rutherford model is the planetary model and the flaw in Bohr's theory is that it is limited.
E) None of these statements are correct

6 : A) the element $_{93}\text{Np}$ is a transuranic.
 B) Non-metals are electropositive
 C) the metallic character varies with the atomic radius in the periodic table.
 D) Nitrogen $_{7}\text{N}$ is bivalent
 E) Fluorine is the least electronegative element in the periodic table

7: Give the VSEPR family of the atoms in bold in the following molecules:

1) H_2O	2) PF_3	3) HCl	4) CH_4
A) AX_2	AX_3	AX	AX_4
B) AX_2E_2	AX_3E	AXE_3	AX_4
C) AX_2	AX_3E_3	AX_3E	AX_4E
D) AX_2E	AX_3E	AXE_3	AX_4


E) None of these propositions is correct.. *Data :* $_{1}\text{H}$ $_{6}\text{C}$ $_{8}\text{O}$ $_{9}\text{F}$ $_{15}\text{P}$ $_{17}\text{Cl}$

8 – 9 Let the reaction: $\text{C(s)} + 2 \text{H}_2\text{O(g)} \longrightarrow \text{CO}_2\text{(g)} + 2 \text{H}_2\text{(g)}$ 298°K
 $\Delta H^{\circ}\text{f}[\text{H}_2\text{O(g)}] = -241.83 \text{ K joule/mole}$ $\Delta H^{\circ}\text{f}[\text{CO}_2\text{(g)}] = -394.59 \text{ K joule/mole}$

8 : A) The reaction is exothermic
 B) The internal energy is: 86.59 K joule
 C) The enthalpy is: -89.59 K joule
 D) The reaction is endothermic
 E) None of these statements is correct.

9 : A) The reaction occurs with an increase in volume
 B) The closed system exchanges matter with the external environment
 C) In thermal equilibrium there is a change in pressure and volume
 D) When a variable changes the system is in equilibrium
 E) None of these statements is correct

10 : We consider the following reaction:

Among the following statements, which ones are correct:

- A)** An increase in pressure shifts the equilibrium in direction (1)
- B)** The reaction is exothermic
- C)** An increase in temperature shifts the equilibrium in direction (2)
- D)** The addition of Al(l) shifts the equilibrium in direction (2)
- E)** None of these statements is correct.

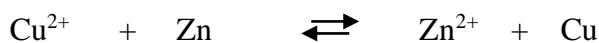
11 : Let's consider the dissociation of the salt calcium fluoride: $\text{CaF}_2 \rightleftharpoons \text{Ca}^{2+} + 2\text{F}^-$

If the constant $K_s = 3.4 \cdot 10^{-11}$, the solubility of the salt in g/l will be : (Ca = 40 ; F = 19)

- A)** $1.59 \cdot 10^{-2}$
- B)** $3.59 \cdot 10^{-2}$
- C)** $2.59 \cdot 10^{-2}$
- D)** $1.59 \cdot 10^{-2}$
- E)** $2.59 \cdot 10^{-2}$

12 : Indicate the correct Nernst relations:

- A)** $(\text{Fe}^{2+}/\text{Fe})$: $E = E^\circ + 0.06/2 \log [\text{Fe}^{2+}] / [\text{Fe}]$.
- B)** $(\text{Fe}^{3+}/\text{Fe}^{2+})$: $E = E^\circ + 0.06 \log [\text{Fe}^{3+}] / [\text{Fe}^{2+}]$.
- C)** (F_2/F^-) :


$$E = E^\circ + 0.06/2 \log P_{\text{F}2} / [\text{F}^-]^2$$

- D)** $\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}$ (acidic environment): $E = E^\circ + 0.06/6 \log [\text{Cr}_2\text{O}_7^{2-}] / [\text{Cr}^{3+}]$

- E)** None of these statements is correct

13 : Either the standard potentials of the following pairs :

$E^\circ (\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ volt}$. $E^\circ (\text{F}_2/\text{F}^-) = 2.65 \text{ volt}$, $E^\circ (\text{Cu}^{2+}/\text{Cu}) = +0.34 \text{ volt}$ and the following balance:

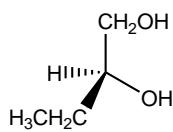
- A)** The reaction will occur in direction (1)
- B)** The reaction will occur in direction (2)
- C)** The most oxidising element is F_2
- D)** The most reducing element is Cu^{2+}
- E)** The most reducing element is Zn

14 : Let the following expressions be given:

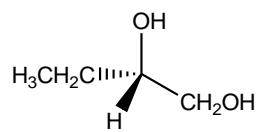
a) $1 / [A] - 1 / [A]_0 = kt$ **b)** $t_{1/2} = \ln 2 / k$ **c)** $\ln [A] / [A]_0 = - kt$
d) $t_{1/2} = [A]_0 / 2k$ **e)** $[A] - [A]_0 = - kt$ **f)** $t_{1/2} = 1 / k [A]_0$.

Indicate the expressions that indicate that the reaction is of order 2.

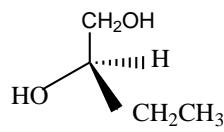
A : (a - f - e) **B:** (a - f) **C:** (b - e - d) **D:** (c - d) **E:** (e - f)


15 : Compounds with the formula C_nH_{2n} are :

A) cyclic alkanes
B) alkynes
C) alkenes
D) cyclic alkenes
E) aromatic compounds


16 : Consider the molecule:: HOCH₂- CHO- CHCl -CHOH -CHO. The name is :

A) 4-chloro-3, 5, 6-trihydroxyhexanal
B) 3-chloro-1, 2, 3-trihydroxypentanol
C) 3-chloro-2, 4, 5-trihydroxypentanal
D) 3-chloro-1, 2, 4-trihydroxypentanal
E) None of these suggestions are correct

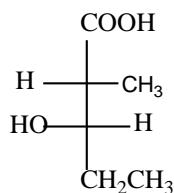

17 – 19 Let us consider the following molecules:

(a)

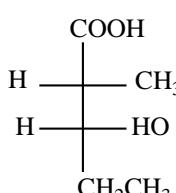
(b)

(c)

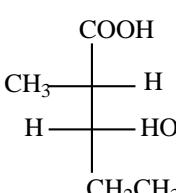
17 : A) (a-b) enantiomers


B) (b-c) diastereoisomers

C) (a-b) identical


D) (a-c) enantiomers

E) configuration of (c) is R.


18- 19 Let us consider the following molecules :

(a)

(b)

(c)

18 :

- A)** (a-c) enantiomers
- B)** (b-c) enantiomers
- C)** (a-b) diastereoisomers
- D)** (a-b) identical
- E)** (a-c) conformers

19 : The configuration of (a) is :

- A)** 2S, 3S
- B)** 2R, 3S
- C)** 2R, 3R
- D)** 2S, 3R
- E)** None of these proposals is correct.

20 :

- A)** Diastereoisomers are mirror images of each other.
- B)** A molecule with four asymmetric carbons and no symmetry will have 16 stereoisomers.
- C)** Enantiomers have different optical rotations.
- D)** Racemic compounds are optically active
- E)** None of these proposals is correct.

Data : ${}_1\text{H}$ ${}_6\text{C}$ ${}_8\text{O}$

MCQ(b) Solutions

	A	B	C	D	E
1				X	
2					X
3			X		
4	X				
5		X		X	
6	X		X		
7		X			
8		X		X	
9	X		X		
10		X	X		
11	X				
12		X	X		
13	X		X		X
14		X			
15	X		X		
16			X		
17			X	X	X
18	X		X		
19		X			
20		X	X		

MCQ(c)

1 Given that Z(Fe) = 26:

- A. The Fe^{3+} has 6 electrons in its d orbitals.
- B. The Fe^{2+} has 6 electrons in its d orbitals.
- C. The configuration of the Fe^{2+} ion is $[\text{Ar}] 3\text{d}^5 4\text{s}^1$.
- D. The configuration of the Fe^{3+} ion is $[\text{Ar}] 3\text{d}^5 4\text{s}^0$.

2 What is/are the possible series of quantum number values?

- A. $n = 2 \ l = 0 \ m = 0$
- B. $n = 0 \ l = 0 \ m = 0$
- C. $n = 2 \ l = 1 \ m = -1$
- D. $n = 3 \ l = 1 \ m = -2$

3- For a hydrogen atom, the radius of an orbit is equal to 25.97 \AA° . This is the orbit :

- A. 7
- B. 8
- C. 6
- D. 5

4- The wavelength associated with an electron is 6.61 \AA° . The speed of the e^- (m/s) will be :

- A. $2.30 \cdot 10^6$
- B. $3.31 \cdot 10^6$
- C. $1.10 \cdot 10^6$
- D. $3.20 \cdot 10^6$

5- Which of the following compounds are paramagnetic ?

- A. $^{12}\text{Mg}^{2+}$
- B. $^{17}\text{Cl}^-$
- C. $^3\text{Li}^{2+}$
- D. ^{19}K

6- For ^{55}Cs : A. family Ia B. bivalent C. electropositive D. valence shell: 5

7- For BF_3 :

- A. Single covalent bonds
- B- Equilateral triangle
- C. Respects the octet rule
- D. AX_3E . $(^5\text{B} ; ^9\text{F})$

8 – 12 Let us consider the following equilibrium: $\text{C}_2\text{H}_4 \text{ (g)} + \text{H}_2\text{O} \text{ (g)} \rightleftharpoons \text{C}_2\text{H}_5\text{OH} \text{ (g)}$

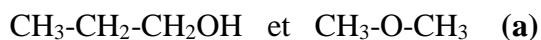
	$\Delta H^\circ\text{f}$ (Kj/mole)	$\Delta G^\circ\text{f}$ (Kj/mole)
C_2H_4	52.28	68.12
H_2O	-241.83	-228.59
$\text{C}_2\text{H}_5\text{OH}$	-235.08	-168.45

8- Standard free enthalpy (Kj) is : **A.** - 9.87 **B.** + 7.98 **C.** + 9.87 **D.** - 7.98

9- **A.** The reaction is possible at 25°C
B. The reaction is exothermic at 25°C
C. The reaction is spontaneous at 25°C
D. Disorder increases.

10- The equilibrium constant K_p at 25° is : **A.** 25.089 **B.** 52.023 **C.** 43. 12 **D.** 34.21

11- The equilibrium constant K_c at 25° is: **A.** 361.02 **B.** 136.1 **C.** 613.07 **D.** 631.08

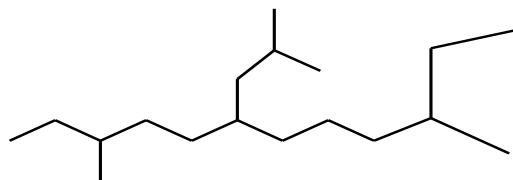

12- **A.** If the temperature increases, the equilibrium shifts in direction (1).
B. If a quantity of H_2O is removed, the equilibrium shifts in direction (2).
C. If the pressure decreases, the equilibrium shifts in direction (2) decreases.
D. If the temperature decreases, the formation of H_2O is favoured.

13- **A.** Van't Off's relationship is : $d \ln K_p/dT = - \Delta H /RT$
B. In an isolated system, the transformation is irreversible when entropy decreases
C. A phase change occurs at constant temperature and heat
D. The absolute entropy of zinc is zero at - 273°

14- **A.** For an isochoric transformation: internal energy = heat
B. Isobaric transformation $P_1/T_1 = P_2/T_2$
C. For a closed transformation, the enthalpy is not zero
D. Isochoric transformation: $P_1/P_2 = T_1/ T_2$.

15- **A.** Diastereoisomers are optically active
B. The meso form is found in compounds with at least one asymmetric carbon
C. An optically inactive molecule is chiral
D. All organics compounds are primarily hydrocarbons

16- Consider the following pairs of molecules:


A. (b) and (c) represent positional isomers.

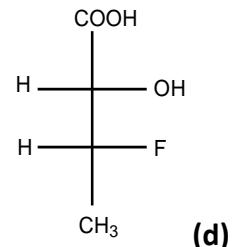
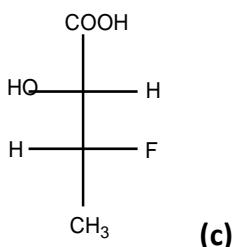
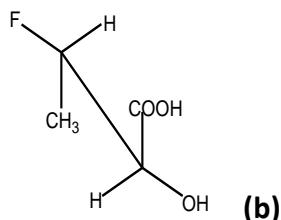
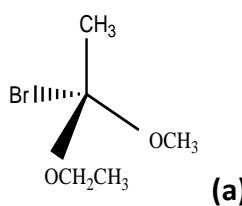
B. (b) represents chain isomers.

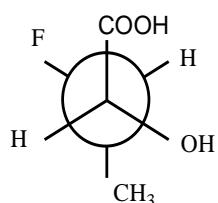
C. (a) represents functional isomers.

D. (c) represents chain and positional isomers.

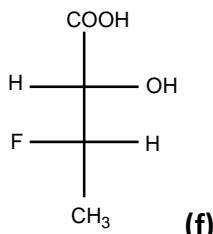
17- Consider the molecule

The name of the molecule is :

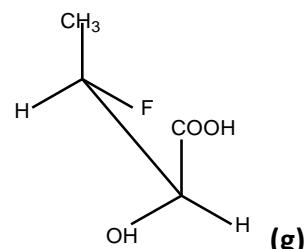




A. 7-isobutyl-3,10-dimethyl Dodecane


B. 6-isobutyl-3,10-dimethyl Dodecane

C. 10-ethyl-6-isobutyl-3-methyl Undecane


D. 2-ethyl-6-isobutyl-9-methyl Undecane.

18 – 20 Let us consider the following molecules: ($_1\text{H}$ $_6\text{C}$ $_8\text{O}$ $_9\text{F}$)



(e)

(f)

(g)

18) A. The configuration of (a) is R

B. The configuration of (a) is S

C. Molecule (e) is more stable than (g)

D. Molecule (e) is the Newman structure of (b).

19) A. (c-d) are enantiomers

B. (f-d) are diastereomers

C. (b-g) are conformers

D. (d-f) are diastereomers.

20) A. (d) is the Fisher isomer of (b)

B. (c-d-e) are isomers

C. (b-g) are conformers

D. (e) is the Newman isomer of (c).

MCQ (c) Solutions

	A	B	C	D
1	X			X
2	X		X	
3	X			
4			X	
5			X	X
6	X		X	X
7		X		
8				X
9		X	X	
10	X			
11			X	
12		X	X	
13			X	X
14	X			X
15	X			X
16	X		X	X
17		X		
18	X			X
19		X	X	X
20	X		X	

Bibliographic references

- 1- Ravomanana, F. (2007). *Chimie générale: Concours PCEM1 (Cours, exercices, annales et QCM corrigés)* (2e éd.). Paris: Ediscience.
- 2- Bonin, J., & Marchal, D. (2008). *La chimie générale en 1001 QCM*. Paris: Éditions Ellipses.
- 3- Ayadim, M. (2013). *QCM de chimie générale* (2e éd.). Bruxelles: De Boeck Supérieur. ISBN 978-2-8041-7556-6.
- 4- Comminellis, C., Friedli, C. K. W., & Sahil-Migirdicyan, A. (2010). *Exercices de chimie générale: 400 exercices avec solutions, 140 QCM corrigés* (3e éd.). Lausanne: Presses polytechniques et universitaires romandes (PPUR). ISBN 978-2880748821
- 5- Troupel, M., & al. (1999). *100 QCM corrigés: Chimie PCEM*. Paris: Maloine.
- 6- Atmani-Merabet, G. (n.d.). *Cours et Travaux Dirigés de Chimie Générale et Chimie Organique: 1ère Année de Médecine Dentaire. Université Salah Boubnider Constantine 3*. Extrait de <http://www.facmed-univ-constantine3.dz>
- 7- Atmani-Merabet, G. (n.d.). *Lectures and Tutorials in General Chemistry and Organic Chemistry: First Year of Dental Medicine. Salah Boubnider Constantine 3 University*. Retrieved from <http://www.facmed-univ-constantine3.dz>