REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 3

FACULTE DE GENIE DES PROCEDES DEPARTEMENT DE GENIE CHIMIQUE

N° d'ordre:				
Série:				
Mémoire de Master				
Filière: génie des procédés	Spécialité: génie chimique			

REDUCTION DU CHROME (VI) PAR UN GEOPOLYMERE

ISSU D'UNE ARGILENATURELLE

Dirigé par:

Mme. CHAABANE Loubna

- BAADACHE Rania

Grade: MCB - MELLAL Kawther

Année Universitaire 2021/2022 Session: Juin

Sommaire

❖ DEDICACE	II
❖ REMERCIEMENTS	I
❖ LISTE DES ABREVIATIONS	IX
❖ LISTE DES FIGURES	X
❖ LISTE DES TABLEAUX	XII
❖ LISTE DES PHOTOS	XIII
❖ INTRODUCTION GENERALE	1
 Chapitre I. Etude bibliographique sur les géopolymères, le chrome et l'ads 	sorption
 Section 1. Généralités sur les géopolymères 	
I.1. Généralités	4
I.2. Mécanisme de la géopolymérisation	5
Étape de dissolution/hydrolyse :	6
Étape de Restructuration :	6
Étape de polycondensation/gélification	6
I.3. Matières premières	6
I.3.1. Matières premières employées pour l'élaboration des géopolymères	6
I.3.2. Types de matières premières aluminosilicates	6
I.3.3. Nature de la solution alcaline	8
I.3.3.2. Silicates de sodium	9
I.4. Gisements de kaolin en Algérie	9
I.4.1. Kaolins de Tamazert	9
I.4.2. Djebel Debbagh (DD)	10
I.5. Propriétés des géopolymères	10
I.6. Domaines d'application des matériaux géopolymères	11
 Section 2. Généralités sur le chrome 	
I.7. Historique	12
I.8. Abondance du chrome (VI) dans la nature	12
I.9. Domaines d'application du chrome (VI)	13
I.10. Problèmes posés par le chrome (VI)	
I.11. Les procédés d'élimination du chrome (VI)	14
 Section 3. Généralité sur l'adsorption 	
I.12. Phénomène d'adsorption	15
I.13. Types d'adsorption	16
I.13.1. Adsorption physique (physisorption)	16

I.13.2. Adsorption chimique (chimisorption)	16
I.14. Comparaison entre l'adsorption physique et l'adsorption chimique	16
I.15. Facteurs influençant l'équilibre d'adsorption	17
I.16. Classification des isothermes d'adsorption	17
I.16.1. Isotherme de type I	17
I.16.2. Isotherme de type II	17
I.16.3. Isotherme de type III	17
I.16.4. Isotherme de type IV et V	18
I.17. Grands types d'adsorbants	18
Chapitre II. Matériels et méthodes	
II.1. Matériel	20
II.1.1. Produits utilisés	20
II.2. Méthodes	20
II.2.1. Préparation de matières premières	21
II.2.2. Préparation de la solution d'activation	22
II.2.3. Formulation des matériaux géopolymères	24
II.3. Techniques de caractérisation des matériaux géopolymères	25
II.3.1. Détermination de l'humidité	25
II.3.2. Analyse par diffraction des rayons X	26
II.3.3. Spectrométrie infrarouge à transformé de Fourier	26
II.3.4. Fluorescence X	28
II.3.5. Théorie de Brunauer, Emmet et Teller (BET) - Surface spécifique	28
II.3.6. Microscopie Electronique à Balayage (MEB)	30
II.4. Dosage du chrome hexavalent	32
II.4.1. Principe de méthode	33
II.4.2. Conception de courbe d'étalonnage	34
II.5. Test caractéristique de la toxicité et du comportement à lixiviation (TCLP)	36
II.5.1. Protocole du test	36
 Chapitre III. Résultats et discussion 	
III.1. Caractérisation des matières premières et des matériaux géopolymères	38
III.1.1. Caractérisation physico-chimiques	38
III.1.2. Caractérisation du kaolin brut (KT)	40
III.1.3. Caractérisation des échantillons obtenus après calcination	42
III.1.4. Caractérisation des matériaux géopolymères	45
III.1.5. Caractérisation de la surface spécifique par BET	50

III.2. Etude de la réduction du chrome hexavalent par le kaolin	n brut et les géopolymères 52
III.2.1. Effet du temps d'agitation	54
III.2.2. Effet de la masse	55
III.2.3. Effet de la concentration	56
III.3. Modélisation d'équilibre d'adsorption	57
III.3.1. Application du modèle de Langmuir	58
III.4. Caractérisation des matériaux dopés en chrome	61
III.4.1. Humidité	61
III.4.1. Analyse par IR-TF	61
III.5. Etude da la lixiviation par TCLP	63
❖ CONCLUSION GENERALE	64
❖ REFERENCE BIBLIOGRAPHIQUE	Erreur! Signet non défini.
❖ ANNEXE	78

الملخص:

تعتبر معالجة الكروم سداسي التكافؤ عن طريق الامتزاز على المواد الطبيعية خيارًا تكنولوجيًا تتم دراسته بشكل متزايد في جميع أنحاء العالم. هدفت هذه الدراسة إلى التخلص من الكروم بواسطة طين الكاولين من تمازيرت وجيوبوليمر تم الحصول عليه بالتفعيل القلوي لهذا الطين. تم تحليل هذه المواد بواسطة FX و DRX و TR-TF و PORX و GET و BET و MEB و تركيز الكروم على هاتين المادتين من خلال تحليل تركيز الكروم المتبقي بواسطة الأشعة فوق البنفسجية المرئية. تم تحليل العديد من المعلمات مثل وقت التلامس والتركيز الأولي وكتلة المادة الماصة. ال نتائج التي تم الحصول عليها مرضية للغاية. وأن أفضل ارتباط للنتائج التجريبية كان وقاً لنموذج Langmuir يقدم الكاولين الخام نفسه على أنه أفضل مادة ماصة مقارنة بالجيوبوليمر.

الكلمات المفتاحية:

جيوبوليمير - كروم سداسي التكافؤ - الكاولين - ميتاكاولين - امتزاز

Résumé

Le traitement du chrome hexavalent par adsorption sur des matériaux naturels constitue une option technologique de plus en plus étudiée à travers le monde. Cette étude visait l'élimination du chrome par une argile kaolinique de Tamazert et un géopolymère obtenu par activation alcaline de cette argile. Ces matériaux ont été analysés par FX, DRX, MEB et BET et la formation du géopolymère a été confirmée. L'étude de l'adsorption du chrome sur ces deux matériaux a été réalisée par analyse de la concentration du chrome restant par UV-visible. Plusieurs paramètres ont été analysés tels que le temps de contact, la concentration initiale et la masse de l'adsorbant. Les rendements obtenus sont très satisfaisant et la réduction se fait rapidement.La meilleure corrélation des résultats expérimentaux est suivant le modèle Langmuir. Le kaolin brut se présente comme le meilleur adsorbant par rapport au géopolymère.

Mots clés

Géopolymère –chrome hexavalent-kaolin-métakaolin-adsorption