

République Algérienne Democratique Publique

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Constantine 3
Faculté de Médecine
Département de Pharmacie

IMPLICATION DU MICROBIOTE INTESTINAL DANS LE DÉVELOPPEMENT DE L'OBÉSITÉ

Mémoire

Présenté pour l'Obtention du Diplôme de Docteur en Pharmacie

Par

BELHOUCHET Soulaima

BLADA Wissal

BOUANANE Kawthar

DOUIEB Raya

Devant le Jury Composé de :

Hocine LAOUAR Président Professeur Université Constantine 3
Samia BENSALEM Examinatrice Professeur Université Constantine 3
Sihem ZITOUNI Encadrante Maître Assistante Université Constantine 3

Année Universitaire 2021-2022

Table des Matières

Liste des Figures	xii
Liste des Tableaux	xv
Liste des Abréviations	XV
Introduction	1
CHAPITRE I : LE MICROBIOTE INTESTINAL	3
I.1 Notions générales	3
I.1.1 Microbiote	3
I.1.2 Microbiome	3
I.2 Composition du microbiote intestinal	3
I.3 Notion d'entérotype	6
I.4 Fonctions du microbiote intestinal	6
I.4.1 Fonctions métaboliques et nutritionnelles	6
I.4.2 Effet barrière et protection	8
I.4.3 Fonction immunitaire.	8
I.4.4 Axe intestin-cerveau	9
I.5 Interaction hôte-microbiote : l'homéostasie intestinale	9
I.6 Méthodes d'analyse du microbiote intestinal	10
I.6.1 Mise en culture	10
I.6.2 Techniques basées sur la biologie moléculaire	11
I.6.2.1 Séquençage de la sous-unité 16S ribosomique	11
I.6.2.2 Métagénomique	11
I.6.2.3 Métatranscriptomique	11
I.6.3 Autres méthodes	11
I.6.3.1 Métaprotéomique	11
I.6.3.2 Métabolomique	11

I.7 Dysbiose intestinale	12
I.7.1 Définitions	12
I.7.2 Types de dysbiose	12
I.7.3 Facteurs influençant le microbiote intestinal	14
I.7.3.1 Mode d'accouchement	14
I.7.3.2 Terme de naissance	14
I.7.3.3 Alimentation	14
I.7.3.4 Âge	16
I.7.3.5 Médicaments	16
I.7.3.6 Alcool	17
I.7.3.7 Environnement	17
I.7.3.8 État psychologique	18
I.7.3.9 Hygiène excessive	19
I.7.3.10 Chirurgie bariatrique	19
I.7.4 Dysbiose et pathologies	20
CHAPITRE II : SURPOIDS, OBÉSITÉ ET DYSBIOSE	22
II.1 Surpoids et obésité	22
II.1.1 Définition.	22
II.1.2 Méthodes d'évaluation de la masse grasse ou paramètres anthropométriques	22
II.1.2.1 Indice de masse corporelle (IMC)	22
II.1.2.2 Indice de masse grasse (IMG)	23
II.1.2.3 Périmètre abdominal (PA)	23
II.1.2.4 Rapport Taille-Hanches (RTH).	24
II.1.2.5 Impédancemétrie	24
II.1.3 Epidémiologie	24
II.1.3 Epidémiologie II.1.3.1 Prévalence	
	24
II.1.3.1 Prévalence	24
II.1.3.1 Prévalence II.1.3.1.1 A l'échelle mondiale	242425
II.1.3.1 Prévalence II.1.3.1.1 A l'échelle mondiale II.1.3.1.2 A l'échelle nationale	24 24 25

II.1.3.2.1 Régime alimentaire	26
II.1.3.2.2 Facteurs génétiques	27
II.1.3.2.3 Hypothyroïdie	27
II.1.3.2.4 Facteurs environnementaux et changement de mode de vie	27
II.1.3.2.5 Troubles de l'humeur	28
II.1.3.2.6 Médicaments	28
II.1.4 Physiopathologie	28
II.1.5 Complications pathologiques	31
II.1.5.1 Complications métaboliques	32
II.1.5.2 Complications cardiovasculaires	32
II.1.5.3 Complications respiratoires	32
II.1.5.4 Complications articulaires	32
II.2 Mécanismes reliant dysbiose et obésité	32
II.2.1 Hyperperméabilité intestinale	33
II.2.2 Inflammation de bas grade	34
II.2.3 Inflammation du tissu adipeux	34
II.2.4 Altération de l'axe microbiote-foie	35
II.2.5 Dysfonction métabolique	36
II.2.5.1 AGCC et extraction énergétique	36
II.2.5.2 Métabolisme des macronutriments	37
II.2.5.3 Polyphénols	38
II.2.5.4 Vitamine K	39
II.2.6 Comportement alimentaire	39
II.2.7 Akkermansia muciniphila: Une nouvelle cible pour contrôler l'obésité	40
II.3 Implication du microbiote dans le diagnostic précoce de l'obésité	42
CHAPITRE III : APPROCHES ET PERSPECTIVES THÉRAPEUTIQUES	44
III.1 Restauration du microbiote intestinal et de la barrière intestinale	44
III.1.1 Mesures alimentaires	44
III.1.1.1 Aliments recommandés	44

III.1.1.2 Aliments déconseillés	47
III.1.2 Compléments alimentaires	47
III.1.2.1 Probiotiques	47
III.1.2.1.1 Définition	47
III.1.2.1.2 Mécanisme d'action	48
III.1.2.1.3 Effets anti-obésogènes	49
III.1.2.1.4 Utilisation	50
III.1.2.2 Prébiotiques	50
III.1.2.2.1 Définition	50
III.1.2.2.2 Mécanisme d'action	51
III.1.2.2.3 Effets anti-obésogènes	52
III.1.2.2.4 Utilisation	53
III.1.2.3 Synbiotiques	53
III.1.2.3.1 Définition	53
III.1.2.3.2 Mécanisme d'action	54
III.1.2.3.3 Effets anti-obésogènes	54
III.1.2.4 Vitamine D	55
III.1.2.5 Magnésium	56
III.1.2.6 Zinc	56
III.1.2.7 Polyphénols.	56
III.1.2.8 Glutamine	56
III.1.3 Phytothérapie	57
III.1.4 Transplantation du microbiote fécal	58
III.2 Autres mesures dans le protocol global de la prise en charge de l'obésité	59
III.2.1 Nutriments clés	59
III.2.2 Activité physique	60
III.2.3 Gestion du stress et traitement des pulsions	61
III.2.4 Lutte contre les polluants et les perturbateurs endocriniens	61
III.2.5 Optimisation du sommeil	62
III.3 Rôle du pharmacien dans l'accompagnement des patients atteints d'obésité	62

III.3.1 Bon usage des antibiotiques	62
III.3.2 Bon usage des compléments alimentaires	63
III.3.3 Éducation thérapeutique pour un mode de vie sain	63
Discussion	65
Conclusion	69
Références bibliographiques	
Annexes	

Timexes

Résumé

Résumé

Depuis quelques années, le microbiote intestinal (l'ensemble des microorganismes vivant en symbiose dans notre tube digestif) est devenu un domaine de grand intérêt. Cette communauté est connue pour sa complexité et sa grande diversité d'espèces avec une variabilité interindividuelle. En outre, cet écosystème remplit des rôles essentiels dans le maintien de notre santé et il a été prouvé qu'il participe entre autres aux fonctions immunitaires et métaboliques. Par conséquent, la dérégulation du microbiote dite dysbiose pourrait être impliquée dans le développement de diverses maladies, dont l'obésité.

Plusieurs mécanismes reliant dysbiose et obésité ont été identifiés et justifiés par de nombreuses études publiées au cours de ces dernières années. Il a été démontré que la dysbiose participe au développement d'une inflammation chronique résultant d'une hyperperméabilité intestinale. Par ailleurs, les changements quantitatifs et qualitatifs de la composition bactérienne perturbent non seulement les fonctions métaboliques et énergétiques mais aussi l'humeur en modifiant la satiété et l'impulsion alimentaire ce qui contribue de façon directe à la prise de poids.

Au fur et à mesure des avancées scientifiques, le microbiote intestinal s'avère une piste thérapeutique et nutritionnelle prometteuse dans la prise en charge du surpoids/obésité. Sa modulation par l'adoption d'une alimentation anti-inflammatoire et la prise de probiotiques constitue le point de départ d'un protocole global qui permet d'interrompre le cercle vicieux de l'inflammation. D'ailleurs, la découverte d'une nouvelle bactérie, *Akkermansia muciniphila*, un acteur bénéfique dans le métabolisme corporel et dans le maintien de la santé intestinale, est devenue une cible intéressante pour contrôler l'obésité.

Le pharmacien, en tant que professionnel de la santé, joue un rôle indispensable dans la prise en charge des patients obèses, en assurant la préservation de la biodiversité du microbiote, en participant à l'éducation thérapeutique et à l'accompagnement des patients pour un mode de vie sain.

Mots clés: Microbiote - Dysbiose - Obésité - Akkermansia muciniphila- Probiotiques - Nutrition.

ملخص

في السنوات الأخيرة ، أصبح الميكروبيوتا (مجموعة الكائنات الحية الدقيقة التي تحيا في تعايش في الجهاز الهضمي) مجالا ذا أهمية كبيرة. هذا المجتمع معروف بتعقيده و تنوعه العالي مع التباين بين الأفراد. في الواقع ، يؤدي هذا النظام البيئي وظائف أساسية في الحفاظ على صحتنا و قد ثبت أنه يساهم في وظائف المناعة والتمثيل الغذائي من بين أمور أخرى. لذلك ، اختلال الميكروبيوتا، المسمى اختلال التوازن المعوي، يمكن أن يساهم في ظهور عدد من الاضطرابات ، بما في ذلك السمنة

تم تحديد وتبرير العديد من الأليات التي تربط بين التوازن المعوي و السمنة و ذلك من خلال العديد من الدراسات التي نشرت في السنوات الأخيرة. لقد ثبت أن اختلال التوازن المعوي يساهم في تطوير الالتهاب المزمن الناتج عن فرط نفاذية الأمعاء. علاوة على ذلك ، فإن التغييرات الكمية والنوعية في التركيب البكتيري لا يعطل وظائف التمثيل الغذائي والحيوي فحسب ، بل يعطل أيضًا الحالة المزاجية عن طريق تعديل حالة الشبع والاندفاع الغذائي ، مما يساهم بشكل مباشر في زيادة الوزن.

مع إحراز تقدم علمي، أثبت الميكروبيوتا أنه وسيلة جيدة للتدخلات العلاجية والغذائية في علاج السمنة . يعتبر تعديله من خلال تبني نظام غذائي مضاد للالتهابات واستخدام البروبيوتيك نقطة انطلاق لبروتوكول شامل يمكن أن يقطع الحلقة المفرغة للالتهاب بالإضافة إلى ذلك ، أصبح التعرف على بكتيريا جديدة تسمى " اكرمانسيا ميسينيفيلا"، وهي عنصر مفيد في التمثيل الغذائي للجسم وفي الحفاظ على صحة الأمعاء ، هدفًا مثيرًا للاهتمام للسيطرة على السمنة.

يلعب الصيدلاني ، بصفته اختصاصيًا صحيًا ، دورًا لا غنى عنه في مرافقة مرضى السمنة ، من خلال ضمان الحفاظ على التنوع البيولوجي للميكروبيوتا، وكذلك من خلال توفير التثقيف العلاجي والدعم المناسب للمرضى من أجل أسلوب حياة صحي.

كلمات مفتاحية: الميكروبيوتا - اختلال التوازن المعوى - السمنة - أكر مانسيا ميسينيفيلا - البروبيوتيك - التغذية

Abstract

In recent years, the intestinal microbiota (the set of microorganisms that live in symbiosis in our digestive tract) has become a field of great interest. This community is renowned for its complexity and its vaste diversity of species with an inter-individual variability. In addition, this ecosystem fulfills crucial roles in the maintenance of our health and has been demonstrated to contribute in immune and metabolic functions among others. Therefore, the deregulation of the microbiota, called dysbiosis, could be involved in the emergence of a number of disorders, including obesity.

Several mechanisms linking dysbiosis and obesity have been identified and justified by numerous studies published in recent years. It has been shown that dysbiosis participates in the development of chronic inflammation resulting from intestinal hyperpermeability. Furthermore, the quantitative and qualitative changes in bacterial composition not only disrupts metabolic and energetic functions but also the mood by modifying satiety and the food impulse, which contributes directly to weight gain.

As scientific advances are made, the intestinal microbiota is proving to be a promising therapeutic and nutritional avenue in the treatment of overweight/obesity. Its modulation through the adoption of an anti-inflammatory diet and the use of probiotics is considered as the starting point of a global protocol that can interrupt the vicious cycle of inflammation. Additionally, the identification of a novel bacteria called *Akkermansia muciniphila*, a beneficial player in body metabolism and in the preservation of intestinal health, has become an interesting target to control obesity.

The pharmacist, as a health professional, plays an indispensable role in the management of obese patients, by ensuring the preservation of the biodiversity of the microbiota, as well as by providing therapeutic education and proper support of patients for a healthy lifestyle.

Key words: Microbiota - Dysbiosis - Obesity - Akkermansia muciniphila- Probiotics - nutrition.

Réalisé par : Melle. BELHOUCHET Soulaima Melle. BLADA Wissal

Melle. BOUANANE Kawthar Melle. DOUIEB Raya

TITRE : IMPLICATION DU MICROBIOTE INTESTINAL DANS LE DÉVELOPPEMENT DE L'OBÉSITÉ

Mémoire de fin d'étude en Vue de l'Obtention du Diplôme de Docteur en Pharmacie

Résumé

Depuis quelques années, le microbiote intestinal (l'ensemble des microorganismes vivant en symbiose dans notre tube digestif) est devenu un domaine de grand intérêt. Cette communauté est connue pour sa complexité et sa grande diversité d'espèces avec une variabilité interindividuelle. En outre, cet écosystème remplit des rôles essentiels dans le maintien de notre santé et il a été prouvé qu'il participe entre autres aux fonctions immunitaires et métaboliques. Par conséquent, la dérégulation du microbiote dite dysbiose pourrait être impliquée dans le développement de diverses maladies, dont l'obésité.

Plusieurs mécanismes reliant dysbiose et obésité ont été identifiés et justifiés par de nombreuses études publiées au cours de ces dernières années. Il a été démontré que la dysbiose participe au développement d'une inflammation chronique résultant d'une hyperperméabilité intestinale. Par ailleurs, les changements quantitatifs et qualitatifs de la composition bactérienne perturbent non seulement les fonctions métaboliques et énergétiques mais aussi l'humeur en modifiant la satiété et l'impulsion alimentaire ce qui contribue de façon directe à la prise de poids.

Au fur et à mesure des avancées scientifiques, le microbiote intestinal s'avère une piste thérapeutique et nutritionnelle prometteuse dans la prise en charge du surpoids/obésité. Sa modulation par l'adoption d'une alimentation anti-inflammatoire et la prise de probiotiques constitue le point de départ d'un protocole global qui permet d'interrompre le cercle vicieux de l'inflammation. D'ailleurs, la découverte d'une nouvelle bactérie, *Akkermansia muciniphila*, un acteur bénéfique dans le métabolisme corporel et dans le maintien de la santé intestinale, est devenue une cible intéressante pour contrôler l'obésité.

Le pharmacien, en tant que professionnel de la santé, joue un rôle indispensable dans la prise en charge des patients obèses, en assurant la préservation de la biodiversité du microbiote, en participant à l'éducation thérapeutique et à l'accompagnement des patients pour un mode de vie sain.

Mots clés : Microbiote - Dysbiose - Obésité - *Akkermansia* - Probiotique - Alimentation.

Encadré par : Dr. ZITOUNI Sihem

Année universitaire: 2021-2022