Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenacer, Dalila-
dc.contributor.authorBoudebous, Saadoun-
dc.date.accessioned2023-03-09T08:14:01Z-
dc.date.available2023-03-09T08:14:01Z-
dc.date.issued2022-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2030-
dc.description.abstractUne étude détaillée du phénomène d’instabilité de l’écoulement de convection mixte dans un milieu poreux confiné au sein d’une cavité carrée chauffée partiellement par le bas en utilisant le modèle de Darcy étendu de Brinkman -Forchheimer. Les parois latérales froides se déplacent avec une vitesse constante vers le haut, tandis que les autres parties sont considérées comme adiabatiques. Le milieu considéré est modélisé à l’aide des équations de Navier-Stockes et l’approximation de Boussinesq. Le problème est ainsi régi par les équations gouvernantes qui sont écrites en formulation « fonction de courant Ψ- vorticité ω» et discrétisées à l’aide d’une méthode aux différences finies. L’influence de certains paramètres, tels que, le nombre de Darcy et de Richardson sur la déstabilisation de l’écoulement ont été étudié. Les résultats obtenus sont présentés sous forme de champs dynamique et thermique, avec l’évolution temporelle du nombre de Nusselt moyen. Ceux-ci ont détecté l’existence d’un changement radical dans les modèles des contours et que le fluide est entièrement convecté pour des nombres de Darcy plus élevés.en_US
dc.language.isofren_US
dc.publisherUniversité Constantine 3 Salah Boubnider, Faculté de génie des procédés pharmaceutiquesen_US
dc.subjectTechnique des différences finiesen_US
dc.subjectConvection mixteen_US
dc.subjectDéstabilisation de l’écoulementen_US
dc.subjectLoi de darcyen_US
dc.titleEtude de la convection mixte dans un milieu poreux confine dans une cavité chauffée par le basen_US
dc.typeThesisen_US
Appears in Collections:Génie des procédés / هندسة الطرائق

Files in This Item:
File Description SizeFormat 
Menacer. thèse complète.pdf8.38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.